Advertisement

Environmental Science and Pollution Research

, Volume 20, Issue 7, pp 5013–5027 | Cite as

Wet precipitation chemistry at a high-altitude site (3,326 m a.s.l.) in the southeastern Tibetan Plateau

  • Bin Liu
  • Shichang Kang
  • Jimin Sun
  • Yulan Zhang
  • Ri Xu
  • Yongjie Wang
  • Yongwen Liu
  • Zhiyuan CongEmail author
Research Article

Abstract

This paper presents the results of wet precipitation chemistry from September 2009 to August 2010 at a high-altitude forest site in the southeastern Tibetan Plateau (TP). The alkaline wet precipitation, with pH ranging from 6.25 to 9.27, was attributed to the neutralization of dust in the atmosphere. Wet deposition levels of major ions and trace elements were generally comparable with other alpine and remote sites around the world. However, the apparently greater contents/fluxes of trace elements (V, Co, Ni, Cu, Zn, and Cd), compared to those in central and southern TP and pristine sites of the world, reflected potential anthropogenic disturbances. The almost equal mole concentrations and perfect linear relationships of Na+ and Cl suggested significant sea-salts sources, and was confirmed by calculating diverse sources. Crust mineral dust was responsible for a minor fraction of the chemical components (less than 15 %) except Al and Fe, while most species (without Na+, Cl, Mg2+, Al, and Fe) arose mainly from anthropogenic activities. High values of as-K+ (anthropogenic sources potassium), as-SO4 2−, and as-NO3 observed in winter and spring demonstrated the great effects of biomass burning and fossil fuel combustion in these seasons, which coincided with haze layer outburst in South Asia. Atmospheric circulation exerted significant influences on the chemical components in wet deposition. Marine air masses mainly originating from the Bay of Bengal provided a large number of sea salts to the chemical composition, while trace elements during summer monsoon seasons were greatly affected by industrial emissions from South Asia. The flux of wet deposition was 1.12 kg N ha−1 year−1 for NH4 +–N and 0.29 kg N ha−1 year−1 for NO3 –N. The total atmospheric deposition of N was estimated to be 6.41 kg N ha−1 year−1, implying potential impacts on the alpine ecosystem in this region.

Keywords

Wet precipitation chemistry Major ions Trace elements Atmospheric N deposition Southeastern Tibetan Plateau 

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China (41075089, 40830743, 41271073). The authors appreciate the support of the K.C. Wang Education Foundation, Hong Kong, and the Youth Innovation Promotion Association, CAS. We thank the staff at the SET Station for collecting the samples, and Shi Yanyun and Gao Shaopeng, who performed the chemical analysis. Special thanks to Betsy Armstrong for the English editing. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the HYSPLIT transport and dispersion model in this publication.

References

  1. Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems. BioScience 48:921–934CrossRefGoogle Scholar
  2. Aizen VB, Mayewski PA, Aizen EM, Joswiak DR, Surazakov AB, Kaspari S, Grigholm B, Krachler M, Handley M, Finaev A (2009) Stable-isotope and trace element time series from Fedchenko glacier (Pamirs) snow/firn cores. J Glaciol 55:1–18CrossRefGoogle Scholar
  3. Bacardit, M., Camarero, L. (2009) Fluxes of Al, Fe, Ti, Mn, Pb, Cd, Zn, Ni, Cu, and As in monthly bulk deposition over the Pyrenees (SW Europe): the influence of meteorology on the atmospheric component of trace element cycles and its implications for high mountain lakes. J Geophys Res 114:G00D02. doi: 10.1029/2008JG000732
  4. Baron JS, Campbell DH (1997) Nitrogen fluxes in a high elevation Colorado Rocky Mountain basin. Hydrol Process 11:783–799CrossRefGoogle Scholar
  5. Burns DA (2003) Atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming—a review and new analysis of past study results. Atmos Environ 37:921–932CrossRefGoogle Scholar
  6. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59CrossRefGoogle Scholar
  7. Calvo AI, Olmo FJ, Lyamani H, Alados-Arboledas L, Castro A, Fernandez-Raga M, Fraile R (2010) Chemical composition of wet precipitation at the background EMEP station in Viznar (Granada, Spain) (2002–2006). Atmos Res 96:408–420CrossRefGoogle Scholar
  8. Cao J, Tie X, Xu B, Zhao Z, Zhu C, Li G, Liu S (2011) Measuring and modeling black carbon (BC) contamination in the SE Tibetan Plateau. J Atmos Chem 67:45–60CrossRefGoogle Scholar
  9. Chan CY, Wong KH, Li YS, Chan LY, Zheng XD (2006) The effects of Southeast Asia fire activities on tropospheric ozone, trace gases and aerosols at a remote site over the Tibetan Plateau of Southwest China. Tellus B 58:310–318CrossRefGoogle Scholar
  10. Cong ZY, Kang SC, Liu XD, Wang GF (2007) Elemental composition of aerosol in the Nam Co region, Tibetan Plateau, during summer monsoon season. Atmos Environ 41:1180–1187CrossRefGoogle Scholar
  11. Cong ZY, Kang SC, Zhang YL, Li XD (2010) Atmospheric wet deposition of trace elements to central Tibetan Plateau. Appl Geochem 25:1415–1421CrossRefGoogle Scholar
  12. Engling G, Zhang YN, Chan CY, Sang XF, Lin M, Ho KF, Li YS, Lin CY, Lee JJ (2011) Characterization and sources of aerosol particles over the southeastern Tibetan Plateau during the Southeast Asia biomass-burning season. Tellus B 63:117–128CrossRefGoogle Scholar
  13. Gabrieli J, Carturan L, Gabrielli P, Kehrwald N, Turetta C, Cozzi G, Spolaor A, Dinale R, Staffler H, Seppi R, dalla Fontana G, Thompson L, Barbante C (2011) Impact of Po Valley emissions on the highest glacier of the Eastern European Alps. Atmos Chem Phys 11:8087–8102CrossRefGoogle Scholar
  14. Galy-Lacaux C, Laouali D, Descroix L, Gobron N, Liousse C (2009) Long term precipitation chemistry and wet deposition in a remote dry savanna site in Africa (Niger). Atmos Chem Phys 9:1579–1595CrossRefGoogle Scholar
  15. Halstead MJR, Cunninghame RG, Hunter KA (2000) Wet deposition of trace metals to a remote site in Fiordland, New Zealand. Atmos Environ 34:665–676CrossRefGoogle Scholar
  16. Huang J, Minnis P, Yi Y, Tang Q, Wang X, Hu Y, Liu Z, Ayers K, Trepte C, Winker D (2007) Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys Res Lett 34:L18805. doi: 10.1029/2007GL029938 CrossRefGoogle Scholar
  17. Hur SD, Cunde X, Hong S, Barbante C, Gabrielli P, Lee K, Boutron CF, Ming Y (2007) Seasonal patterns of heavy metal deposition to the snow on Lambert Glacier basin, East Antarctica. Atmos Environ 41:8567–8578CrossRefGoogle Scholar
  18. Kang SC, Zhang QG, Kaspari S, Qin DH, Cong ZY, Ren JW, Mayewski PA (2007) Spatial and seasonal variations of elemental composition in Mt. Everest (Qomolangma) snow/firn. Atmos Environ 41:7208–7218CrossRefGoogle Scholar
  19. Keene WC, Pszenny AAP, Galloway JN, Hawley ME (1986) Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J Geophys Res 91:6647–6658CrossRefGoogle Scholar
  20. Lammel G, Brüggemann E, Gnauk T, Müller K, Neusüss C, Röhrl A (2003) A new method to study aerosol source contributions along the tracks of air parcels and its application to the near-ground level aerosol chemical composition in central Europe. J Aerosol Sci 34:1–25CrossRefGoogle Scholar
  21. Landing WM, Caffrey JM, Nolek SD, Gosnell KJ, Parker WC (2010) Atmospheric wet deposition of mercury and other trace elements in Pensacola, Florida. Atmos Chem Phys 10:4867–4877CrossRefGoogle Scholar
  22. Lelieveld J, Crutzen PJ, Ramanathan V, Andreae MO, Brenninkmeijer CAM, Campos T, Cass GR, Dickerson RR, Fischer H, de Gouw JA, Hansel A, Jefferson A, Kley D, de Laat ATJ, Lal S, Lawrence MG, Lobert JM, Mayol-Bracero OL, Mitra AP, Novakov T, Oltmans SJ, Prather KA, Reiner T, Rodhe H, Scheeren HA, Sikka D, Williams J (2001) The Indian Ocean Experiment: widespread air pollution from South and Southeast Asia. Science 291:1031–1036CrossRefGoogle Scholar
  23. Li CL, Kang SC, Zhang QG (2009) Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport. Environ Pollut 157:2261–2265CrossRefGoogle Scholar
  24. Li CL, Kang SC, Zhang QG, Kaspari S (2007) Major ionic composition of precipitation in the Nam Co region, Central Tibetan Plateau. Atmos Res 85:351–360CrossRefGoogle Scholar
  25. Liang E, Wang Y, Eckstein D, Luo T (2011) Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytol 190:760–769CrossRefGoogle Scholar
  26. Liu W, Fox JED, Xu Z (2003) Nutrient budget of a montane evergreen broad-leaved forest at Ailao Mountain National Nature Reserve, Yunnan, southwest China. Hydrol Process 17:1119–1134CrossRefGoogle Scholar
  27. Lu X, Li LY, Li N, Yang G, Luo D, Chen J (2011) Chemical characteristics of spring rainwater of Xi’an city, NW China. Atmos Environ 45:5058–5063CrossRefGoogle Scholar
  28. Luo T, Li W, Zhu H (2002) Estimated biomass and productivity of natural vegetation on the Tibetan Plateau. Ecol Appl 12:980–997CrossRefGoogle Scholar
  29. Marinoni A, Polesello S, Smiraglia C, Valsecchi S (2001) Chemical composition of fresh snow samples from the southern slope of Mt. Everest region (Khumbu–Himal region, Nepal). Atmos Environ 35:3183–3190CrossRefGoogle Scholar
  30. Ming J, Cachier H, Xiao C, Qin D, Kang S, Hou S, Xu J (2008) Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmos Chem Phys 8:1343–1352CrossRefGoogle Scholar
  31. Ming J, Xiao CD, Sun JY, Kang SC, Bonasoni P (2010) Carbonaceous particles in the atmosphere and precipitation of the Nam Co region, central Tibet. J Environ Sci China 22:1748–1756CrossRefGoogle Scholar
  32. Novakov T, Andreae MO, Gabriel R, Kirchstetter TW, Mayol-Bracero OL, Ramanathan V (2000) Origin of carbonaceous aerosols over the tropical Indian Ocean: biomass burning or fossil fuels? Geophys Res Lett 27(24):4061–4064CrossRefGoogle Scholar
  33. Ohsawa M (1984) Differentiation of vegetation zones and species strategies in the subalpine region of Mt. Fuji. Plant Ecol 57:15–52CrossRefGoogle Scholar
  34. Pacyna JM, Pacyna EG (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9:269–298CrossRefGoogle Scholar
  35. Pauliquevis T, Lara LL, Antunes ML, Artaxo P (2012) Aerosol and precipitation chemistry measurements in a remote site in Central Amazonia: the role of biogenic contribution. Atmos Chem Phys 12:4987–5015CrossRefGoogle Scholar
  36. Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS, Ashmore MR, Ineson P (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Chang Biol 12:470–476CrossRefGoogle Scholar
  37. Polkowska Ż, Górecki T, Namieśnik J (2011) Determination of atmospheric pollutants in wet deposition. Environ Rev 19:185–213CrossRefGoogle Scholar
  38. Ram K, Sarin MM (2010) Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. J Aerosol Sci 41:88–98CrossRefGoogle Scholar
  39. Ramanathan V, Crutzen PJ, Lelieveld J, Mitra AP, Althausen D, Anderson J, Andreae MO, Cantrell W, Cass GR, Chung CE, Clarke AD, Coakley JA, Collins WD, Conant WC, Dulac F, Heintzenberg J, Heymsfield AJ, Holben B, Howell S, Hudson J, Jayaraman A, Kiehl JT, Krishnamurti TN, Lubin D, McFarquhar G, Novakov T, Ogren JA, Podgorny IA, Prather K, Priestley K, Prospero JM, Quinn PK, Rajeev K, Rasch P, Rupert S, Sadourny R, Satheesh SK, Shaw GE, Sheridan P, Valero FPJ (2001) Indian Ocean Experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res 106:28371–28398. doi: 10.1029/2001JD900133 CrossRefGoogle Scholar
  40. Rudnick R, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64CrossRefGoogle Scholar
  41. Safai PD, Rao PSP, Mornin GA, All K, Chate DM, Praveen PS (2004) Chemical composition of precipitation during 1984–2002 at Pune, India. Atmos Environ 38:1705–1714CrossRefGoogle Scholar
  42. Sakata M, Asakura K (2009) Factors contributing to seasonal variations in wet deposition fluxes of trace elements at sites along Japan Sea coast. Atmos Environ 43:3867–3875CrossRefGoogle Scholar
  43. Shrestha AB, Wake CP, Dibb JE, Whitlow SI (2002) Aerosol and precipitation chemistry at a remote Himalayan site in Nepal. Aerosol Sci Tech 36:441–456CrossRefGoogle Scholar
  44. Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196CrossRefGoogle Scholar
  45. Tang J, Xue H, Yu X, Cheng H, Xu X (2000) The preliminary study on chemical characteristics of precipitation at Mt. Waliguan. Acta Sci Circumst 04:420–425 (in Chinese with English abstract)Google Scholar
  46. Valsecchi S, Smiraglia C, Tartari G, Polesello S (1999) Chemical composition of Monsoon deposition in the Everest region. Sci Total Environ 226:187–199CrossRefGoogle Scholar
  47. Wai KM, Lin NH, Wang SH, Dokiya Y (2008) Rainwater chemistry at a high-altitude station, Mt. Lulin, Taiwan: comparison with a background station, Mt. Fuji. J Geophys Res 113:D06305. doi: 10.1029/2006JD008248 CrossRefGoogle Scholar
  48. Wang Y, Ma Y, Zhu Z, Li M (2010) Variation characteristics of meteorological elements in near surface layer over the Lulang valley of southeastern Tibetan Plateau. Plateau Meteorol 01:63–69 (in Chinese with English abstract)Google Scholar
  49. Yang Y, Gao D, Li B (1989) Study on the moisture passage on the lower reaches of the Yarlung Zangbo River. Sci China Ser B 05:580–593Google Scholar
  50. Zhang DD, Peart MR, Jim CY, La J (2002) Alkaline rains on the Tibetan Plateau and their implication for the original pH of natural rainfall. J Geophys Res 107:4198. doi: 10.1029/2001jd001332 CrossRefGoogle Scholar
  51. Zhang Y, Kang S, Li C, Cong Z, Zhang Q (2012a) Wet deposition of precipitation chemistry during 2005–2009 at a remote site (Nam Co Station) in central Tibetan Plateau. J Atmos Chem. doi: 10.1007/s10874-012-9236-3
  52. Zhang Y, Song L, Liu XJ, Li WQ, Lü SH, Zheng LX, Bai ZC, Cai GY, Zhang FS (2012b) Atmospheric organic nitrogen deposition in China. Atmos Environ 46:195–204CrossRefGoogle Scholar
  53. Zhou J, Wang Y, Yue T, Li Y, Wai KM, Wang W (2012) Origin and distribution of trace elements in high-elevation precipitation in southern China. Environ Sci Pollut R 19:3389–3399CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bin Liu
    • 1
    • 4
  • Shichang Kang
    • 2
    • 3
  • Jimin Sun
    • 1
  • Yulan Zhang
    • 2
  • Ri Xu
    • 2
  • Yongjie Wang
    • 2
  • Yongwen Liu
    • 2
    • 4
  • Zhiyuan Cong
    • 2
    Email author
  1. 1.Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Cryospheric SciencesChinese Academy of SciencesLanzhouChina
  4. 4.Graduate University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations