Environmental Science and Pollution Research

, Volume 20, Issue 6, pp 3956–3964 | Cite as

Photocatalytic degradation of N-heterocyclic aromatics—effects of number and position of nitrogen atoms in the ring

Research Article

Abstract

This study demonstrates the influences of position, number of nitrogen (N) atoms and –C–N– or –N=N– linkage present in the six membered heterocyclic compounds such as pyridine, pyrazine, and pyridazine on their photocatalytic degradation by Au, Ag, and Fe+2 deposited TiO2 photocatalyst. The photodegradation rate of these heterocyclic compounds follow the order pyridine > pyrazine > pyridazine due to the different extent of hydroxylation and difference in position and number of N atoms in the aromatic moiety. The Au photodeposition significantly improved the TiO2 photoactivity as compared to Ag and Fe+2 loading. The presence of two N atoms in pyrazine and pyridazine as compared to one N atom in pyridine hamper the nucleophilc attack of OH radicals in comparison to easy hydroxylation of pyridine ring. There is 1 N atom, 4C–C, 1C–N and 1C=N bond in pyridine, 2 N atoms in the 1 and 4 positions, 2C–C, 2C–N bonds and 2C=N bonds in pyrazine, and pyridazine ring contains 2 N atoms in the 1 and 2 positions, 3C–C, 1N–N bond and 2C=N bonds. The bond strength/energy decreases gradually as: C=N– (615 KJ/mol) > –N=N– (418 KJ/mol) > –C–C– (347 KJ/mol) > –C–N– (305 KJ/mol) > –N–N– (163 KJ/mol). As pyridine has 1C–N, 1C=N, and no N–N bond, it photodegrades easily as compared to 1 N–N and 2C=N bonds of pyridazine of lowest photodecomposition rate. The improved photoactivity of Au–TiO2 is explained on the basis of its favorable redox potential, work function, and electron-capturing capacity, etc.

Keywords

Au–TiO2 photoactivity Pyridine degradation N-heteroaromatics degradation Metal–TiO2 photocatalysis Pyrazine photodegradation 

References

  1. Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667CrossRefGoogle Scholar
  2. Anpo M (2000) Utilization of TiO2 photocatalysts in green chemistry. Pure Appl Chem 72:1265–1270CrossRefGoogle Scholar
  3. Calza P, Pelizzeti E, Minero C (2005) The fate of organic nitrogen in photocatalysis: an overview. J Appl Electrochem 35:665–673CrossRefGoogle Scholar
  4. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107:2891–2959CrossRefGoogle Scholar
  5. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1:1–21CrossRefGoogle Scholar
  6. Gupta VK, Ali I (2008) Removal of endosulfan and methoxychlor from water on carbon slurry. Environ Sci Technol 42:766–770CrossRefGoogle Scholar
  7. Gupta VK, Rastogi A (2008) Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153:759–766CrossRefGoogle Scholar
  8. Gupta VK, Rastogi R (2009) Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater 163:396–402CrossRefGoogle Scholar
  9. Gupta VK, Sharma S (2003) Removal of zinc from aqueous solutions using bagasse fly ash—a low cost adsorbent. Ind Eng Chem Res 42:6619–6624CrossRefGoogle Scholar
  10. Gupta VK, Srivastava SK, Tyagi R (2000) Design parameters for the treatment of phenolic wastes by carbon columns (obtained from fertilizer waste material). Water Res 34:1543–1550CrossRefGoogle Scholar
  11. Gupta VK, Mittal A, Gajbe V, Mittal J (2006a) Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind Eng Chem Res 45:1446–1453CrossRefGoogle Scholar
  12. Gupta VK, Mittal A, Krishnan L, Mittal J (2006b) Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya. J Colloid Interface Sci 293:16–26CrossRefGoogle Scholar
  13. Gupta VK, Mittal A, Kurup L, Mittal J (2006c) Adsorption of a hazardous dye, erythrosine, over hen feathers. J Colloid Interface Sci 304:52–57CrossRefGoogle Scholar
  14. Gupta VK, Ali I, Saini VK (2007a) Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J Colloid Interface Sci 315:87–93CrossRefGoogle Scholar
  15. Gupta VK, Ali I, Saini VK (2007b) Defluoridation of waste waters using waste carbon slurry. Water Res 41:3307–3316CrossRefGoogle Scholar
  16. Gupta VK, Jain R, Varshney S (2007c) Removal of reactofix golden yellow 3 RFN from aqueous solution using wheat husk—an agricultural waste. J Hazard Mater 142:443–448CrossRefGoogle Scholar
  17. Gupta VK, Jain R, Mittal A, Mathur M, Sikarwar S (2007d) Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J Colloid Interface Sci 309:464–469CrossRefGoogle Scholar
  18. Gupta VK, Jain R, Varshney S (2007e) Electrochemical removal of the hazardous dye reactofix Red 3 BFN from industrial effluents. J Colloid Interface Sci 312:292–296CrossRefGoogle Scholar
  19. Gupta VK, Mittal A, Gajbe V, Mittal J (2008) Adsorption of basic fuchsin using waste materials—bottom ash and deoiled soya—as adsorbents. J Colloid Interface Sci 319:30–39CrossRefGoogle Scholar
  20. Gupta VK, Gupta B, Rastogi A, Agarwal S, Nayak A (2011a) Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Res 45:4047–4055CrossRefGoogle Scholar
  21. Gupta VK, Gupta B, Rastogi A, Agarwal S, Nayak A (2011b) A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113. J Hazard Mater 186:891–901CrossRefGoogle Scholar
  22. Gupta VK, Jain R, Agarwal S, Shrivastava M (2011c) Kinetics of photo-catalytic degradation of hazardous dye Tropaeoline 000 using UV/TiO2 in a UV reactor, Colloids and Surfaces A. Physicochem Eng Asp 378:22–26CrossRefGoogle Scholar
  23. Gupta VK, Jain R, Nayak A, Agarwal S, Shrivastava M (2011d) Removal of the hazardous dye–Tartrazine by photodegradation on titanium dioxide surface. Mater Sci Eng C 31:1062–1067CrossRefGoogle Scholar
  24. Gupta VK, Jain R, Agarwal S, Nayak A, Shrivastava M (2012a) Photodegradation of hazardous dye quinoline yellow catalyzed by TiO2. J Colloid Interface Sci 366:135–140CrossRefGoogle Scholar
  25. Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S (2012b) Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater Sci Eng C 32:12–17CrossRefGoogle Scholar
  26. Guzsvány VJ, Csanádi JJ, Lazić SD, Gaál FF (2009) Photocatalytic degradation of the insecticide acetamiprid on TiO2 catalyst. J Braz Chem Soc 20:152–159Google Scholar
  27. Heredia JD, Torregrosa J, Dominguez JR, Peres JA (2001) Oxidation of p-hydroxybenzoic acid by UV radiation and by TiO2/UV radiation: comparison and modelling of reaction kinetic. J Hazard Mater 83:255–264CrossRefGoogle Scholar
  28. Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129CrossRefGoogle Scholar
  29. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  30. Jain AK, Gupta VK, Shubhi J, Suhas (2004) Removal of chlorophenols using industrial wastes. Environ Sci Technol 38:1195–1200CrossRefGoogle Scholar
  31. Khan A, Haque MM, Mir NA, Muneer M, Boxall C (2010) Heterogeneous photocatalysed degradation of an insecticide derivative acetamiprid in aqueous suspensions of semiconductor. Desalination 261:169–174CrossRefGoogle Scholar
  32. Khan MM, Kalathil S, Lee J, Cho MH (2012) Enhancement in the photocatalytic activity of Au@TiO2 nanocomposites by pretreatment of TiO2 with UV light. Bull Korean Chem Soc 33:1753–1758CrossRefGoogle Scholar
  33. Kiefer JH, Zhang Q, Kern RD, Yao J (1997) Pyrolyses of aromatic azines: pyrazine, pyrimidine and pyridine. J Phys Chem A 101:7061–7073CrossRefGoogle Scholar
  34. Kudo A, Miseki Y (2009) Heterogenous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRefGoogle Scholar
  35. Leyva E, Montalvo C, Moctezuma E, Leyva S (2008) Photocatalytic degradation of pyridine in water solution using ZnO as an alternative to TiO2. J Ceram Proces Res 9:455–462Google Scholar
  36. Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y (2007) Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J Am Chem Soc 129:4538–4539CrossRefGoogle Scholar
  37. Litter MI (1999) Heterogenous photocatalysis transition metal ions in photocatalytic system. Appl Catal B Environ 23:89–114CrossRefGoogle Scholar
  38. Loganathan K, Bommusamy P, Muthaiahpillai P, Velayutham M (2011) The syntheses, characterizations, and photocatalytic activities of silver, platinum, and gold doped TiO2 nanoparticles. Environ Eng Res 16:81–90CrossRefGoogle Scholar
  39. Low KCG, Mc Evoy SR, Mathews RW (1991) Formation of nitrate and ammonium ions in titanium dioxide mediated photocatalytic degradation of organic compounds containing nitrogen atoms. Environ Sci Technol 25:460–467CrossRefGoogle Scholar
  40. Mallard-Dupuy C, Gulllard C, Courbon H, Pichat P (1994) Kinetics and products of the TiO2 photocatalytic degradation of pyridine in water. Environ Sci Technol 28:2176–2183CrossRefGoogle Scholar
  41. Mehrvar M, Anderson WA, Moo-Young M (2000) Photocatalytic degradation of aqueous tetrahydrofuran, 1,4-dioxane, and their mixture with TiO2. Int J Photoenergy 2:67–80CrossRefGoogle Scholar
  42. Mills S, Hunte L (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem 108:1–35CrossRefGoogle Scholar
  43. Mittal A, Gupta VK (2010) Adsorptive removal and recovery of the azo dye Eriochrome Black T. Toxicol Environ Chem 92:1813–1823CrossRefGoogle Scholar
  44. Mittal A, Krishnan L, Gupta VK (2005) Use of waste materials—bottom ash and de-oiled soya, as potential adsorbents for the removal of Amaranth from aqueous solutions. J Hazard Mater 117:171–178CrossRefGoogle Scholar
  45. Muller R, Rappert S (2010) Pyrazines: occurence, formation and biodegrdation. Appl Microbiol Biotechnol 85:1315–1320CrossRefGoogle Scholar
  46. Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676CrossRefGoogle Scholar
  47. Nathan RH, Douglas KR (1998) Radical pathways in the thermal decomposition of pyridine and diazines: a laser pyrolysis and semi-empirical study. J Chem Soc Perkin Trans 2:269–275Google Scholar
  48. Paola AD, Marci G, Palmisano L, Schiavello M, Uosaki K, Ikeda S, Ohtani B (2002) Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol. J Phys Chem B 106:637–645CrossRefGoogle Scholar
  49. Rappert S, Botsch KC, Nagorny S, Francke W, Muller R (2006) Degradation of 2,3-diethyl-5-methylpyrazine by a newly discovered bacterium, Mycobacterium sp. strain DM-11. Appl Environ Microbiol 72:1437–1444CrossRefGoogle Scholar
  50. Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 371:101–106CrossRefGoogle Scholar
  51. Sarmah AK, Sabadie J (2002) Hydrolysis of sulfonylurea herbicides in soils and aqueousb solutions: a review. J Agric Food Chem 50:6253–6265CrossRefGoogle Scholar
  52. Sims GK, O’Loughlin EJ (1989) Degradation of pyridines in the environment. Critic Rev Environ Control 19:309–340CrossRefGoogle Scholar
  53. Subramanian V, Wolf EF, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites: effect of metal particle size on the Fermi level equilibration. J Am Chem Soc 126:4943–4950CrossRefGoogle Scholar
  54. Thiruvenkatachari R, Vigneswaran S, Moon S (2008) A review on UV\TiO2 photocatalytic oxidation process. Korean J Chem Eng 25:64–72CrossRefGoogle Scholar
  55. Tian Y, Tatsuma T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 1277:632–637Google Scholar
  56. Yun HJ, Lee H, Kim ND, Yi J (2009) Characterization of photocatalytic performance of silver deposited TiO2 nanorods. Electrochem Commun 11:363–366CrossRefGoogle Scholar
  57. Zhang Q, Joo JB, Lu Z, Dahl M, Oliveira DQL, Ye M, Yin Y (2011) Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nanoresearch 4(1):103–114Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Chemistry and BiochemistryThapar UniversityPatialaIndia

Personalised recommendations