Advertisement

Environmental Science and Pollution Research

, Volume 20, Issue 5, pp 2924–2936 | Cite as

The role of transboundary air pollution over Galicia and North Portugal area

  • C. Borrego
  • J. A. Souto
  • A. Monteiro
  • M. Dios
  • A. Rodríguez
  • J. Ferreira
  • S. Saavedra
  • J. J. Casares
  • A. I. Miranda
Research Article

Abstract

In summer, high levels of ozone (O3) are frequently measured at both Galicia and Northern Portugal air quality monitoring stations, even exceeding the limit values imposed by legislation. This work aims to investigate the origin of these high O3 concentrations by the application of a chemical transport modelling system over the northwestern area of the Iberian Peninsula. The WRF–CHIMERE modelling system was applied with high resolution to simulate the selected air pollution episodes that occurred simultaneously in Galicia and North Portugal and in order to study both the contribution of local emission sources and the influence of transboundary pollution. Emission inputs have been prepared based on the development of the Portuguese and Galician emission inventories. The obtained results for O3 have been evaluated and validated against observations. Modelling results show possible contribution of the transboundary transport over the border of two neighbour regions/countries, indicating that the O3 episode starts over the urban and industrialised area of North coast of Portugal, reaching the maximum peaks over this region; at the same time, O3 levels increased over Galicia region, where lower concentrations, but still high, were observed. These results pointed out that air quality management should not be driven by political boundaries and highlight the importance of joining efforts between neighbouring countries.

Keywords

Air pollution episodes Ozone Transboundary regions Air quality modelling Air pollutants transport 

Notes

Acknowledgements

The authors acknowledge the Portuguese Environmental Protection Agency, MeteoGalicia, Laboratorio de Medio Ambiente de Galicia (Xunta de Galicia) and As Pontes Power Plant (Endesa) for the observational dataset support. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.arl.noaa.gov/ready.php) used in this publication. Thanks are extended to the Portuguese ‘Ministério da Ciência, da Tecnologia e do Ensino Superior’ for the post-doctoral grants of A. Monteiro (SFRH/BPD/63796/2009) and J. Ferreira (SFRH/BPD/40620/2007). PhD grants of A. Rodríguez and M. Dios (‘María Barbeito’ Programme) and the research stay abroad grant of M. Dios (09.02.561B.444.0) at the University of Aveiro were supported by Xunta de Galicia regional government. This work was developed as part of the project ‘XIMERE/FUXIMERE’ (10MDS009E), also with support of Endesa Generación, S.A. (‘Characterization of ozone episodes’) and Troposfera S.C. (‘Collaboration in air quality modeling over Galicia’).

References

  1. Anastassopoulos A, Nguyen S, Xu X (2004) On the use of the HYSPLIT model to study air quality in Windsor, Ontario, Canada. Environ Inform Arch 2:517–525Google Scholar
  2. Barros N, Borrego C, Toll I, Soriano C, Jiménez P, Baldasano JM (2003) Urban photochemical pollution in the Iberian Peninsula: Lisbon and Barcelona Airsheds. J Air Waste Manag 53:347–359CrossRefGoogle Scholar
  3. Bessagnet B, Hodzic A, Vautard R, Beekmann M, Cheinet S, Honoré C, Liousse C, Rouil L (2004) Aerosol modeling with CHIMERE—preliminary evaluation at the continental scale. Atmos Environ 38:2803–2817CrossRefGoogle Scholar
  4. Borrego C, Miranda AI, Coutinho M, Ferreira J, Carvalho AC (2002) Air quality management in Portugal: example of needs and available tools. Environ Pollut 120:115–123CrossRefGoogle Scholar
  5. Carvalho A, Monteiro A, Ribeiro I, Tchepel O, Miranda A, Borrego C, Saavedra S, Souto JA, Casares JJ (2010) High ozone levels in the Northeast of Portugal: analysis and characterization. Atmos Environ 44(8):1020–1031CrossRefGoogle Scholar
  6. Dios M, Castro MS, Souto JA, Casares JJ (2010) An evaluation of road traffic emissions around Galician cities. The Sustainable City VI. Urban Regen Sustain 683–693. doi: 10.2495/SC100581
  7. Dios M, Souto JA, Casares JJ, Gallego N, Sáez A, Macho ML, Cartelle D, Vellón JM (2012) A mixed top-down and bottom-up methodology in spatial segregation of emissions based on GIS tools. 20th International Conference on Modelling, Monitoring and Management of Air Pollution, 16–18 May 2012, A Coruña, SpainGoogle Scholar
  8. Draxler RR, Hess GD (2004) Description of the HYSPLIT 4 modelling system, technical memorandum ERL ARL-224. NOAA Air Resources Laboratory, Silver SpringGoogle Scholar
  9. EEA European Environment Agency (2009) EMEP/EEA air pollutant emission inventory guidebook. Technical Report No 6/2009. European Environment Agency, Copenhagen, p 2009Google Scholar
  10. EIONET European Topic Centre on Spatial Information and Analysis (2006) Corine land cover 2006 (http://sia.eionet.europa.eu/CLC2006)
  11. EMEP—European Monitoring and Evaluation Programme (2012) EMEP activity data and emission database 2012, Centre on Emission Inventories and Projections (www.ceip.at/webdab-emission-database/)
  12. Emery CA (2001) Enhanced meteorological modeling and performance evaluation for two Texas ozone episodes. Prepared for the Texas Natural Resource Conservation Commission, by ENVIRON International CorporationGoogle Scholar
  13. Escudero M, Ávila A, Cuevas E (2007) Origin of the exceedances of the European daily PM limit value in regional background areas of Spain. Atmos Environ 41:730–744CrossRefGoogle Scholar
  14. Flocas H, Kelessis A, Helmis C, Petrakakis M, Zoumakis M, Pappas K (2009) Synoptic and local scale atmospheric circulation associated with air pollution episodes in an urban Mediterranean area. Theor Appl Climatol 95:265–277. doi: 10.1007/s00704-008-0005-9 CrossRefGoogle Scholar
  15. García MA, Sánchez ML, Pérez IA, De Torre B (2005) Ground level ozone concentrations at a rural location in northern Spain. Sci Total Environ 348:135–150CrossRefGoogle Scholar
  16. Gonçalves M, Jiménez-Guerrero P, Baldasano JM (2009) Contribution of atmospheric processes affecting the dynamics of air pollution in South-Western Europe during a typical summertime photochemical episode. Atmos Chem Phys 9(849–864):2009Google Scholar
  17. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer P, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210CrossRefGoogle Scholar
  18. Jiménez P, Lelieveld J, Baldasano JM (2006) Multiscale modeling of air pollutants dynamics in the northwestern Mediterranean basin during a typical summertime episode. J Geophys Res 111:D18306. doi: 10.1029/2005JD006516 CrossRefGoogle Scholar
  19. Jorba O, Pérez C, Rocadenbosch F, Baldasano JM (2004) Cluster analysis of 4-day back trajectories arriving in the Barcelona area (Spain) from 1997 to 2002. J Appl Meteorol 43(6):887–901CrossRefGoogle Scholar
  20. Karvosenoja N (2008) Emission scenario model for regional air pollution. Monographs of the Boreal Environment Research. Monograph No. 32. Finnish Environment Institut, FinlandGoogle Scholar
  21. Millán M, Salvador R, Mantilla E, Kallos G (1997) Photooxidant dynamics in the Mediterranean basin in summer: results from European research projects. J Geophys Res 102:8811–8823CrossRefGoogle Scholar
  22. Monteiro A, Vautard R, Borrego C, Miranda AI (2005) Long-term simulations of photo oxidant pollution over Portugal using the CHIMERE model. Atmos Environ 39:3089–3101CrossRefGoogle Scholar
  23. Monteiro A, Borrego C, Miranda AI, Gois V, Torres P, Perez AT (2007) Can air quality modeling improve emission inventories? In: Proceedings of the 6th International Conference on Urban Air Quality, 26–30 March, Limassol, Cyprus, 13–14Google Scholar
  24. Monteiro A, Strunk A, Carvalho A, Tchepel O, Miranda AI, Borrego A, Saavedra S, Rodríguez A, Souto JA, Casares J, Friese E, Elbern H (2012) Investigating a high ozone episode in a rural mountain site. Environ Pollut 62:176–189CrossRefGoogle Scholar
  25. Palacios M, Kirchner F, Martilli A, Clappier A, Martiın F, Rodriguez ME (2002) Summer ozone episodes in the Greater Madrid area. Analysing the ozone response to abatement strategies by modelling. Atmos Environ 36:5323–5333CrossRefGoogle Scholar
  26. Pont V, Fontan J, Lopez A (2003) Variability of tropospheric ozone concentrations: comparison of ground-level data with aircraft measurements during the “O3 Reg” campaign (19–21 July 2000). Atmos Res 66:83–105CrossRefGoogle Scholar
  27. Saavedra S, Rodríguez A, Souto JA, Casares JJ, Bermúdez JL, Soto B (2012) Trends of rural tropospheric ozone at the Northwest of the Iberian Peninsula. Sci World J, Article ID 603034, doi: 10.1100/2012/603034
  28. Salvador P, Artíñano B, Molero F, Viana M, Pey J, Alstuey A, Querol X (2012) African dust contribution to ambient aerosol levels across central Spain: characterization of long-range transport episodes of desert dust. Atmos Res. doi: 10.1016/j.atmosres.2011.12.011
  29. Schmidt H, Derognat C, Vautard R, Beekmann M (2001) A comparison of simulated and observed ozone mixing ratios for the summer of 1998 in western Europe. Atmos Environ 35:2449–2461CrossRefGoogle Scholar
  30. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York. ISBN 9780471178163Google Scholar
  31. Shi C, Fernando HJS, Jie Yang J (2009) Contributors to ozone episodes in three U.S./Mexico border twin-cities. Sci Total Environ 407:5128–5138CrossRefGoogle Scholar
  32. Skamarock WC, Klemp JB (2008) A time-split non-hydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485CrossRefGoogle Scholar
  33. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(7):7183–7192Google Scholar
  34. Thunis P, Georgieva E, Galmarini S (2010) A procedure for air quality models benchmarking. Available at: http://fairmode.ew.eea.europa.eu/fol568175/work-groups
  35. USGS (2008) U.S. geological survey, technical report U.S. Geological survey. http://www.usgs.gov (November 2008)

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • C. Borrego
    • 1
  • J. A. Souto
    • 2
  • A. Monteiro
    • 1
  • M. Dios
    • 2
  • A. Rodríguez
    • 2
  • J. Ferreira
    • 1
  • S. Saavedra
    • 2
  • J. J. Casares
    • 2
  • A. I. Miranda
    • 1
  1. 1.CESAM—Centre for Environmental and Marine Studies, Department of Environment and PlanningUniversity of AveiroAveiroPortugal
  2. 2.Department of Chemical EngineeringUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations