Environmental Science and Pollution Research

, Volume 20, Issue 4, pp 2603–2615

Pollution characteristics of ambient volatile organic compounds (VOCs) in the southeast coastal cities of China

  • Lei Tong
  • Xu Liao
  • Jinsheng Chen
  • Hang Xiao
  • Lingling Xu
  • Fuwang Zhang
  • Zhenchuan Niu
  • Jianshuan Yu
Research Article

Abstract

With the rapid urbanization, the southeast coastal cities of China are facing increasing air pollution in the past decades. Large emissions of VOCs from vehicles and petrochemical factories have contributed greatly to the local air quality deterioration. Investigating the pollution characteristics of VOCs is of great significance to the environmental risk assessment and air quality improvement. Ambient VOC samples were collected simultaneously from nine coastal cities of southeast China using the Tedlar bags, and were subsequently preprocessed and analyzed using a cryogenic preconcentrator and a gas chromatography–mass spectrometry system, respectively. VOC compositions, spatial distributions, seasonal variations and ozone formation potentials (OPFs) were discussed. Results showed that methylene chloride, toluene, isopropyl alcohol and n-hexane were most abundant species, and oxygenated compounds, aromatics and halogenated hydrocarbons were most abundant chemical classes (62.5–95.6 % of TVOCs). Both industrial and vehicular exhausts might contribute greatly to the VOC emissions. The VOC levels in the southeast coastal cities of China were sufficiently high (e.g., 6.5 μg m−3 for benzene) to pose a health risk to local people. A more serious pollution state was found in the southern cities of the study region, while higher VOC levels were usually observed in winter. The B/T ratio (0.26 ± 0.09) was lower than the typical ratio (ca. 0.6) for roadside samples, while the B/E (1.6–7.6) and T/E (7.2–26.8) ratios were higher than other cities around the world, which indicated a unique emission profile in the study region. Besides, analysis on ozone formation potentials (OFPs) indicated that toluene was the most important species in ozone production with the accountabilities for total OFPs of 22.6 to 59.6 %.

Keywords

VOCs Spatial distributions Seasonal variations BTEX Ozone formation potentials Southeast coastal cities of China 

References

  1. Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34(12–14):2063–2101. doi:10.1016/S1352-2310(99)00460-4 CrossRefGoogle Scholar
  2. Barletta B, Meinardi S, Simpson IJ, Khwaja HA, Blake DR, Rowland FS (2002) Mixing ratios of volatile organic compounds (VOCs) in the atmosphere of Karachi, Pakistan. Atmos Environ 36(21):3429–3443. doi:10.1016/S1352-2310(02)00302-3 CrossRefGoogle Scholar
  3. Barletta B, Meinardi S, Sherwood Rowland F, Chan CY, Wang X, Zou S, Yin Chan L, Blake DR (2005) Volatile organic compounds in 43 Chinese cities. Atmos Environ 39(32):5979–5990. doi:10.1016/j.atmosenv.2005.06.029 CrossRefGoogle Scholar
  4. Bernstein JA, Alexis N, Bacchus H, Bernstein IL, Fritz P, Horner E, Li N, Mason S, Nel A, Oullette J (2008) The health effects of nonindustrial indoor air pollution. J Allergy Clin Immun 121(3):585–591. doi:10.1016/j.jaci.2007.10.045 CrossRefGoogle Scholar
  5. Bromberg P, Koren H (1995) Ozone-induced human respiratory dysfunction and disease. Toxicol Lett 82–83:307–316. doi:10.1016/0378-4274(95)03565-6 CrossRefGoogle Scholar
  6. Cai C, Geng F, Tie X, Yu Q, An J (2010) Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmos Environ 44(38):5005–5014. doi:10.1016/j.atmosenv.2010.07.059 CrossRefGoogle Scholar
  7. Carter WPL (1994) Development of ozone reactivity scales for volatile organic compounds. J Air Waste Manage 44:881–889CrossRefGoogle Scholar
  8. Cerqueira M, Pio C, Gomes P, Matos J, Nunes T (2003) Volatile organic compounds in rural atmospheres of central Portugal. Sci Total Environ 313(1–3):49–60. doi:10.1016/S0048-9697(03)00250-X CrossRefGoogle Scholar
  9. Chan L, Lau W, Wang X, Tang J (2003) Preliminary measurements of aromatic VOCs in public transportation modes in Guangzhou, China. Environ Int 29(4):429–435. doi:10.1016/S0160-4120(02)00189-7 DOI:10.1016/S0160-4120(02)00189-7 CrossRefGoogle Scholar
  10. Cheng L, Fu L, Angle RP, Sandhu HS (1997) Seasonal variations of volatile organic compounds in Edmonton, Alberta. Atmos Environ 31(2):239–246. doi:10.1016/1352-2310(96)00170-7 CrossRefGoogle Scholar
  11. Chiang HL, Tsai JH, Chen SY, Lin KH, Ma SY (2007) VOC concentration profiles in an ozone non-attainment area: a case study in an urban and industrial complex metroplex in southern Taiwan. Atmos Environ 41(9):1848–1860. doi:10.1016/j.atmosenv.2006.10.055 CrossRefGoogle Scholar
  12. Civan MY, Kuntasal ÖO, Tuncel G (2011) Source apportionment of ambient volatile organic compounds in Bursa, a heavily industrialized city in Turkey. Environ Forensics 12(4):357–370. doi:10.1080/15275922.2011.622345 CrossRefGoogle Scholar
  13. Delfino RJ, Gong H, Linn WS, Hu Y, Pellizzari ED (2003) Respiratory symptoms and peak expiratory flow in children with asthma in relation to volatile organic compounds in exhaled breath and ambient air. J Expo Sci Env Epid 13(5):348–363. doi:10.1038/sj.jea.7500287 CrossRefGoogle Scholar
  14. Demir S, Saral A, Ertürk F, Kuzu S, Goncaloğlu B, Demir G (2011) Effect of diurnal changes in VOC source strengths on performances of receptor models. Environ Sci Pollut Res:1–12. doi:10.1007/s11356-011-0636-8
  15. Derwent R, Jenkin M, Saunders S, Pilling M, Simmonds P, Passant N, Dollard G, Dumitrean P, Kent A (2003) Photochemical ozone formation in north west Europe and its control. Atmos Environ 37(14):1983–1991. doi:10.1016/S1352-2310(03)00031-1 CrossRefGoogle Scholar
  16. Duan J, Tan J, Yang L, Wu S, Hao J (2008) Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos Res 88(1):25–35. doi:10.1016/j.atmosres.2007.09.004 CrossRefGoogle Scholar
  17. EU (European Union) (2008) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off J Eur Union L152:30Google Scholar
  18. Gee IL, Sollars CJ (1998) Ambient air levels of volatile organic compounds in Latin American and Asian cities. Chemosphere 36(11):2497–2506. doi:10.1016/S0045-6535(97)10217-X CrossRefGoogle Scholar
  19. Geng F, Zhao C, Tang X, Lu G, Tie X (2007) Analysis of ozone and VOCs measured in Shanghai: a case study. Atmos Environ 41(5):989–1001. doi:10.1016/j.atmosenv.2006.09.023 CrossRefGoogle Scholar
  20. Geng F, Tie X, Xu J, Zhou G, Peng L, Gao W, Tang X, Zhao C (2008) Characterizations of ozone, NOx, and VOCs measured in Shanghai, China. Atmos Environ 42(29):6873–6883. doi:10.1016/j.atmosenv.2008.05.045 CrossRefGoogle Scholar
  21. Guo H, So K, Simpson I, Barletta B, Meinardi S, Blake D (2007) C1–C8 volatile organic compounds in the atmosphere of Hong Kong: overview of atmospheric processing and source apportionment. Atmos Environ 41(7):1456–1472. doi:10.1016/j.atmosenv.2006.10.011 CrossRefGoogle Scholar
  22. Ho KF, Lee SC, Guo H, Tsai WY (2004) Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong. Sci Total Environ 322(1–3):155–166. doi:10.1016/j.scitotenv.2003.10.004 CrossRefGoogle Scholar
  23. Hsieh CC, Tsai JH (2003) VOC concentration characteristics in Southern Taiwan. Chemosphere 50(4):545–556. doi:10.1016/S0045-6535(02)00275-8 CrossRefGoogle Scholar
  24. IARC (International Agency for Research on Cancer) (2012) IARC monographs on the evaluation of carcinogenic risks to humans. http://monographs.iarc.fr. Accessed March 2012
  25. Jia C, Batterman S, Godwin C (2008) VOCs in industrial, urban and suburban neighborhoods, Part 1: indoor and outdoor concentrations, variation, and risk drivers. Atmos Environ 42(9):2083–2100. doi:10.1016/j.atmosenv.2007.11.055 CrossRefGoogle Scholar
  26. Jones AP (1999) Indoor air quality and health. Atmos Environ 33(28):4535–4564. doi:10.1016/S1352-2310(99)00272-1 CrossRefGoogle Scholar
  27. Kansal A (2009) Sources and reactivity of NMHCs and VOCs in the atmosphere: a review. J Hazard Mater 166(1):17–26. doi:10.1016/j.jhazmat.2008.11.048 CrossRefGoogle Scholar
  28. Keymeulen R, Görgényi M, Héberger K, Priksane A, Van Langenhove H (2001) Benzene, toluene, ethyl benzene and xylenes in ambient air and Pinus sylvestris L. needles: a comparative study between Belgium, Hungary and Latvia. Atmos Environ 35(36):6327–6335. doi:10.1016/S1352-2310(01)00424-1 CrossRefGoogle Scholar
  29. Khoder M (2007) Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmos Environ 41(3):554–566. doi:10.1016/j.atmosenv.2006.08.051 CrossRefGoogle Scholar
  30. Lee SC, Chiu MY, Ho KF, Zou SC, Wang X (2002) Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. Chemosphere 48(3):375–382. doi:10.1016/S0045-6535(02)00040-1 CrossRefGoogle Scholar
  31. Liu Y, Shao M, Fu L, Lu S, Zeng L, Tang D (2008) Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos Environ 42(25):6247–6260. doi:10.1016/j.atmosenv.2008.01.070 CrossRefGoogle Scholar
  32. Mao T, Wang YS, Xu HH, Jiang J, Wu FK, Xu XB (2009) A study of the atmospheric VOCs of Mount Tai in June 2006. Atmos Environ 43(15):2503–2508. doi:10.1016/j.atmosenv.2009.02.013 CrossRefGoogle Scholar
  33. Mirkin DB (2007) Benzene and related aromatic hydrocarbons. In: Shannon MW, Borron SW, Burns MJ (eds) Haddad and Winchester's clinical management of poisoning and drug overdose, 4th edn. Elsevier, Philadelphia, chap 94Google Scholar
  34. Muir B, Hursthouse A, Smith F (2001) Application of diffusion-based surveys in the district-wide assessment of benzene and select volatile organic compounds in urban environments-a case study from Renfrewshire, Scotland. J Environ Monitor 3(6):646–653. doi:10.1039/B106834M CrossRefGoogle Scholar
  35. Na K, Kim YP, Moon KC (2003) Diurnal characteristics of volatile organic compounds in the Seoul atmosphere. Atmos Environ 37(6):733–742. doi:10.1016/S1352-2310(02)00956-1 CrossRefGoogle Scholar
  36. Na K, Moon KC, Kim YP (2005) Source contribution to aromatic VOC concentration and ozone formation potential in the atmosphere of Seoul. Atmos Environ 39(30):5517–5524. doi:10.1016/j.atmosenv.2005.06.005 CrossRefGoogle Scholar
  37. Nelson P, Quigley S (1983) The m,p-xylenes:ethylbenzene ratio. A technique for estimating hydrocarbon age in ambient atmospheres. Atmos Environ 17(3):659–662. doi:10.1016/0004-6981(83)90141-5 CrossRefGoogle Scholar
  38. Niu ZC, Zhang H, Xu Y, Liao X, Xu LL, Chen JS (2012) Pollution characteristics of volatile organic compounds in the atmosphere of Haicang District in Xiamen City, Southeast China. J Environ Monitor 14(4):1145–1152. doi:10.1039/c2em10884d CrossRefGoogle Scholar
  39. Okada Y, Nakagoshi A, Tsurukawa M, Matsumura C, Eiho J, Nakano T (2012) Environmental risk assessment and concentration trend of atmospheric volatile organic compounds in Hyogo Prefecture, Japan. Environ Sci Pollut Res 19(1):201–213. doi:10.1007/s11356-011-0550-0 CrossRefGoogle Scholar
  40. Otto D, Molhave L, Rose G, Hudnell HK, House D (1990) Neurobehavioral and sensory irritant effects of controlled exposure to a complex mixture of volatile organic compounds. Neurotoxicol Teratol 12(6):649–652. doi:10.1016/0892-0362(90)90079-R CrossRefGoogle Scholar
  41. Pankow JF, Luo W, Bender DA, Isabelle LM, Hollingsworth JS, Chen C, Asher WE, Zogorski JS (2003) Concentrations and co-occurrence correlations of 88 volatile organic compounds (VOCs) in the ambient air of 13 semi-rural to urban locations in the United States. Atmos Environ 37(36):5023–5046. doi:10.1016/j.atmosenv.2003.08.006 CrossRefGoogle Scholar
  42. Parra M, Elustondo D, Bermejo R, Santamaria J (2009) Ambient air levels of volatile organic compounds (VOC) and nitrogen dioxide (NO2) in a medium size city in Northern Spain. Sci Total Environ 407(3):999–1009. doi:10.1016/ j.scitotenv.2008.10.032 Google Scholar
  43. Pekey B, Yilmaz H (2011) The use of passive sampling to monitor spatial trends of volatile organic compounds (VOCs) at an industrial city of Turkey. Microchem J 97(2):213–219. doi:10.1016/j.microc.2010.09.006 CrossRefGoogle Scholar
  44. Rappengliick B, Fabian P (1998) A study of BTEX-ratios in the urban area of Munich/Germany using rapid gas chromatography. Environ Sci Pollut R 5(2):65–70. doi:10.1007/BF02986388 CrossRefGoogle Scholar
  45. Roukos J, Riffault V, Locoge N, Plaisance H (2009) VOC in an urban and industrial harbor on the French North Sea coast during two contrasted meteorological situations. Environ Pollut 157(11):3001–3009. doi:10.1016/j.envpol.2009.05.059 CrossRefGoogle Scholar
  46. Srivastava A (2004) Source apportionment of ambient VOCs in Mumbai city. Atmos Environ 38(39):6829–6843. doi:10.1016/j.atmosenv.2004.09.009 CrossRefGoogle Scholar
  47. Srivastava A, Sengupta B, Dutta SA (2005) Source apportionment of ambient VOCs in Delhi City. Sci Total Environ 343(1–3):207–220. doi:10.1016/j.scitotenv.2004.10.008 CrossRefGoogle Scholar
  48. Tonooka Y, Kannari A, Higashino H, Murano K (2001) NMVOCs and CO emission inventory in East Asia. Water Air Soil Poll 130(1–4):199–204. doi:10.1023/A:1013890513856 CrossRefGoogle Scholar
  49. USEPA (United States Environment Protection Agency) (1999) Determination of volatile organic compounds (VOCs) in air collected in specially-prepared canisters and analyzed by gas chromatography/mass spectrometry (GC/MS). http://www.epa.gov/ttn/amtic/airtox.html. Accessed January 2011
  50. Wang X, Sheng G, Fu J, Chan C, Lee SC, Chan LY, Wang Z (2002) Urban roadside aromatic hydrocarbons in three cities of the Pearl River Delta, People's Republic of China. Atmos Environ 36(33):5141–5148. doi:10.1016/S1352-2310(02)00640-4 CrossRefGoogle Scholar
  51. Wang XK, Manning WJ, Feng ZW, Zhu YG (2007) Ground-level ozone in China: distribution and effects on crop yields. Environ Pollut 147(2):394–400. doi:10.1016/j.envpol.2006.05.006 CrossRefGoogle Scholar
  52. Wei W, Wang S, Hao J, Cheng S (2011) Projection of anthropogenic volatile organic compounds (VOCs) emissions in China for the period 2010–2020. Atmos Environ 45(380):6863–6871. doi:10.1016/j.atmosenv.2011.01.013 CrossRefGoogle Scholar
  53. Whitfield R, Richmond H, Johnson T (1998) Overview of ozone human exposure and health risk analyses used in the U.S. EPA's review of the ozone air quality standard. Stud. Environ Sci 72:483–516. doi:10.1016/S0166-1116(98)80030-7 Google Scholar
  54. WHO (World Health Organization) (2000) Air Quality Guidelines for Europe, 2nd edn. Regional Office for Europe, ISBN 92 190 1358 3. Copenhagen, DenmarkGoogle Scholar
  55. Yassaa N, Meklati BY, Brancaleoni E, Frattoni M, Ciccioli P (2001) Polar and non-polar volatile organic compounds (VOCs) in urban Algiers and Saharian sites of Algeria. Atmos Environ 35(4):787–801. doi:10.1016/S1352-2310(00)00238-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Lei Tong
    • 1
    • 2
  • Xu Liao
    • 1
  • Jinsheng Chen
    • 1
    • 2
  • Hang Xiao
    • 1
    • 2
  • Lingling Xu
    • 1
    • 3
  • Fuwang Zhang
    • 1
    • 3
  • Zhenchuan Niu
    • 1
  • Jianshuan Yu
    • 4
  1. 1.Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  2. 2.Ningbo Research Center for Urban EnvironmentChinese Academy of SciencesNingboChina
  3. 3.Graduate University of Chinese Academy of SciencesBeijingChina
  4. 4.Environmental Monitoring Center of XiamenXiamenChina

Personalised recommendations