Advertisement

Environmental Science and Pollution Research

, Volume 20, Issue 4, pp 2352–2361 | Cite as

Application of Fenton, photo-Fenton, solar photo-Fenton, and UV/H2O2 to degradation of the antineoplastic agent mitoxantrone and toxicological evaluation

  • Rodrigo Pereira Cavalcante
  • Lucas da Rocha Sandim
  • Danielle Bogo
  • Antônio Marcos Jacques Barbosa
  • Marly Eiko OsugiEmail author
  • Matildes Blanco
  • Silvio Cesar de Oliveira
  • Maria de Fatima Cepa Matos
  • Amilcar MachulekJr
  • Valdir Souza Ferreira
Research Article

Abstract

In the present study, selected advanced oxidation processes (AOPs)—namely, photo-Fenton (with Fe2+, Fe3+, and potassium ferrioxalate—FeOx—as iron sources), solar photo-Fenton, Fenton, and UV/H2O2—were investigated for degradation of the antineoplastic drug mitoxantrone (MTX), frequently used to treat metastatic breast cancer, skin cancer, and acute leukemia. The results showed that photo-Fenton processes employing Fe(III) and FeOx and the UV/H2O2 process were most efficient for mineralizing MTX, with 77, 82, and 90 % of total organic carbon removal, respectively. MTX probably forms a complex with Fe(III), as demonstrated by voltammetric and spectrophotometric measurements. Spectrophotometric titrations suggested that the complex has a 2:1 Fe3+:MTX stoichiometric ratio and a complexation constant (K) of 1.47 × 104 M–1, indicating high MTX affinity for Fe3+. Complexation partially inhibits the involvement of iron ions and hence the degradation of MTX during photo-Fenton. The UV/H2O2 process is usually slower than the photo-Fenton process, but, in this study, the UV/H2O2 process proved to be more efficient due to complexing of MTX with Fe(III). The drug exhibited no cytotoxicity against NIH/3T3 mouse embryonic fibroblast cells when oxidized by UV/H2O2 or by UV/H2O2/FeOx at the concentrations tested.

Keywords

AOPs Waste treatment Iron–mitoxantrone complex Spectroscopic methods Voltammetry NIH/3T3 cell line 

Notes

Acknowledgments

The authors wish to thank the Brazilian funding agencies CNPq, CAPES, and FUNDECT for their financial support. A.M. Jr. is associated with NAP-PhotoTech, the USP Research Consortium for Photochemical Technology, and INCT-EMA. The authors also wish to thank the Hospital Regional, in Campo Grande, Mato Grosso do Sul (Brazil), for the generous donation of mitoxantrone.

References

  1. Alberts DS, Peng Y-M, Leigh S, Davis TP, Woodward DL (1985) Disposition of mitoxantrone in cancer patients. Cancer Res 45:1879–1884Google Scholar
  2. American Public Health Association (APHA) (1999) Method 3500-Fe B, phenanthroline method. In: Standard methods for the examination of water and wastewater, 21st edn. American Publish Health Association, Washington, pp 124–130Google Scholar
  3. Batista APS, Nogueira RFP (2012) Parameters affecting sulfonamide photo-Fenton degradation—iron complexation and substituent group. J Photochem Photobiol A 232:8–13CrossRefGoogle Scholar
  4. Besse J-P, Latour J-F, Garric J (2012) Anticancer drugs in surface waters. What can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environ Int 39:73–86CrossRefGoogle Scholar
  5. Bogo D, Matos MFC, Honda NK, Pontes ERJC, Oguma PM, Santos ECS, Carvalho JE, Nomizo A (2010) In vitro antitumour activity of orsellinates. Zeitschrift für Naturforschung. CA J Bioscience 65:43–48Google Scholar
  6. Bolton JR (1995) The photochemical conversion and storage of solar energy: an historical perspective. Solar Energ Mat Solar C 38:543–554CrossRefGoogle Scholar
  7. Braun AM, Maurette MT, Oliveiros E (1991) Photochemical technology chischester. Wiley, New YorkGoogle Scholar
  8. Brett AMO, Macedo TRA, Raimundo D, Marques MH, Serrano SHP (1999) Electrochemical oxidation of mitoxantrone at a glassy carbon electrode. Anal Chim Acta 385:401–408CrossRefGoogle Scholar
  9. Calvert JG, Pitts JN (1966) Photochemistry. Wiley, New YorkGoogle Scholar
  10. Carneiro PA, Nogueira RFP, Zanoni MV (2007) Homogeneous photodegradation of C.I. Reactive Blue 4 using a photo-Fenton process under artificial and solar irradiation. Dyes Pigments 74:127–132CrossRefGoogle Scholar
  11. Dyke PH, Foan C, Fredler H (2003) PCB and PAH releases from power stations and waste incineration processes in the UK. Chemosphere 50:469–480CrossRefGoogle Scholar
  12. Enache M, Bendic C, Volanschi E (2008) Spectroelectrochemistry of the redox activation of anti-cancer drug mitoxantrone. Bioelectrochemistry 72:10–20CrossRefGoogle Scholar
  13. Fiallo MML, Garnier-Suillerot A, Matzanke B, Kozlowski H (1999) How Fe3+ binds anthracycline antitumor compounds. The myth and the reality of a chemical sphinx. J Inorg Biochem 75:105–115CrossRefGoogle Scholar
  14. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photoch Photobio C 9:1–12CrossRefGoogle Scholar
  15. Gebhardt W, Schröder HF (2007) Liquid chromatography–(tandem) mass spectrometry for the follow-up of the elimination of persistent pharmaceuticals during wastewater treatment applying biological wastewater treatment and advanced oxidation. J Chromatogr A 1160:34–43CrossRefGoogle Scholar
  16. Ghaly MY, Hartel G, Mayer R, Haseneder R (2001) Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study. Waste Manage 21:41–47CrossRefGoogle Scholar
  17. Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–551CrossRefGoogle Scholar
  18. Golabi SM, Hassan-Zadeh V (1996) Polarographic determination of mitoxantrone in pharmaceutical preparations and biological media. Talanta 43:397–406CrossRefGoogle Scholar
  19. Halling-Sorensen B, Nielsen SN, Lanzky PF, Ingerslev F, Liitzhofl HCH, Jorgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36:357–393CrossRefGoogle Scholar
  20. Herman EH, Zhang J, Hasinoff BB, Clark JR Jr, Ferrans VJ (1997) Comparison of the structural changes induced by doxorubicin and mitoxantrone in the heart, kidney and intestine and characterization of the Fe(III)–mitoxantrone complex. J Mol Cell Cardiol 29:2415–2430CrossRefGoogle Scholar
  21. Kim I, Yamashita N, Tanaka H (2009) Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments. Chemosphere 77:518–525CrossRefGoogle Scholar
  22. Kümmerer K (2001) Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources—a review. Chemosphere 45:957–969CrossRefGoogle Scholar
  23. Lee CC, Huffman GL (1996) Medical waste management/incineration. J Hazard Mater 48:1–30CrossRefGoogle Scholar
  24. Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water-treatment. Chem Rev 93:671–698CrossRefGoogle Scholar
  25. Li N, Yang X (2005) Promoted electron transfer of mitoxantrone binding with DNA by cytochrome c. Biochem Bioph Res Co 331:947–952CrossRefGoogle Scholar
  26. Li N, Maa Y, Yanga C, Guoc L, Yanga X (2005) Interaction of anticancer drug mitoxantrone with DNA analysed by electrochemical and spectroscopic methods. Biophys Chem 116:199–205CrossRefGoogle Scholar
  27. Machulek A Jr, Gogritcchiani E, Moraes JEF, Quina FH, Braun AM, Oliveros E (2009a) Kinetic and mechanistic investigation of the ozonolysis of 2,4-xylidine (2,4-dimethyl-aniline) in acid aqueous solution. Sep Purif Technol 67:141–148CrossRefGoogle Scholar
  28. Machulek A Jr, Moraes JEF, Okano LT, Silvério CA, Quina FH (2009b) Photolysis of ferric ion in the presence of sulfate or chloride ions: implications for the photo-Fenton process. Photochem Photobiol Sci 8:985–991CrossRefGoogle Scholar
  29. Micheletti AC, Honda NK, Lima DP, Beatriz A, Santana MR, Carvalho NCP, Matos MFC, Queiróz LMM, Bogo D, Zorzattto JR (2011) Chemical modifications of a natural xanthone and antimicrobial activity against multidrug resistant Staphylococcus aureus and cytotoxicity against human tumor cell lines. Quim Nova 34:1014–1020CrossRefGoogle Scholar
  30. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, Gray-Goodrich M, Campbell H, Mayo J, Boyd M (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer I 83:757–766CrossRefGoogle Scholar
  31. National Cancer Institute (Inca). Brazil: Ministério da Saúde. INC; c1996-2011 Available from: http://www.inca.org.br/. Accessed 20 November 2011 (in Portuguese).
  32. Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater B98:33–50CrossRefGoogle Scholar
  33. Nogueira RFP, Oliveira MC, Paterlini WC (2005) Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta 66:86–91CrossRefGoogle Scholar
  34. Nussbaumer S, Bonnabry P, Veuthey J-L, Fleury-Souverain S (2011) Analysis of anticancer drugs: a review. Talanta 85:2265–2289CrossRefGoogle Scholar
  35. Ocampo-Pérez R, Sanchez-Polo M, Rivera-Utrilla J, Leyva-Ramos R (2010) Degradation of antineoplastic cytarabine in aqueous phase by advanced oxidation processes based on ultraviolet radiation. J Chem Eng 165:581–588CrossRefGoogle Scholar
  36. Osugi ME, Rajeshwar K, Ferraz ERA, Oliveira DP, Araújo ÂR, Zanoni MVB (2009) Comparison of oxidation efficiency of disperse dyes by chemical and photoelectrocatalytic chlorination and removal of mutagenic activity. Electrochim Acta 54:2086–2093CrossRefGoogle Scholar
  37. Pereira AV, Valus N, Beltrame FL, Garrido LH (2011) Determination of iron (III) in pharmaceutical products by photometric titration. Acta Sci Health Sci 33:65–70 (in Portuguese)CrossRefGoogle Scholar
  38. Pérez-Moya M, Graells M, Castells G, Amigó J, Ortega E, Buhigas G, Pérez LM, Mansilla HD (2010) Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process. Water Res 44:2533–2540CrossRefGoogle Scholar
  39. Pignatello JJ, Oliveros E, Mackay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Env Sci Tec 36:1-84. Errata (2007) Crit Rev Env Sci Tec 37:273-275.Google Scholar
  40. Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR, Zanoni MVB, Kajitvichyanukul P, Krishnan-Ayer R (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photoch Photobio C 9:171–192CrossRefGoogle Scholar
  41. Safarzadeh-Amiri A, Bolton JR, Cater JR (1997) Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water. Water Res 31:787–798CrossRefGoogle Scholar
  42. Santos LHMLM, Araujo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95CrossRefGoogle Scholar
  43. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer drug screening. J Nat Cancer Inst 82:1107–1112CrossRefGoogle Scholar
  44. Turci R, Sottani C, Schierl R, Minoia C (2006) Validation protocol and analytical quality in biological monitoring of occupational exposure to antineoplastic drugs. Toxicol Lett 162:256–262CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Rodrigo Pereira Cavalcante
    • 1
  • Lucas da Rocha Sandim
    • 1
  • Danielle Bogo
    • 2
  • Antônio Marcos Jacques Barbosa
    • 1
    • 3
  • Marly Eiko Osugi
    • 1
    Email author
  • Matildes Blanco
    • 4
  • Silvio Cesar de Oliveira
    • 1
  • Maria de Fatima Cepa Matos
    • 2
  • Amilcar MachulekJr
    • 1
  • Valdir Souza Ferreira
    • 1
  1. 1.Centro de Ciências Exatas e Tecnologia (CCET)Universidade Federal de Mato Grosso do SulCampo GrandeBrazil
  2. 2.Centro de Ciências Biológicas e da Saúde (CCBS)Universidade Federal de Mato Grosso do SulCampo GrandeBrazil
  3. 3.Laboratório Central de Saúde Pública do Estado de Mato Grosso do Sul (LACEN-MS)Campo GrandeBrazil
  4. 4.Universidade Federal de Mato Grosso do SulChapadão do SulBrazil

Personalised recommendations