Environmental Science and Pollution Research

, Volume 20, Issue 4, pp 2305–2320

Photocatalytic degradation of Reactive Red 195 using anatase/brookite TiO2 mesoporous nanoparticles: Optimization using response surface methodology (RSM) and kinetics studies

  • Nikolaos Tzikalos
  • Vassiliki Belessi
  • Dimitra Lambropoulou
Research Article


In the present study, the photocatalytic degradation of Reactive Red 195 (RR195) from aqueous samples under UV-A irradiation by using anatase/brookite TiO2 (A/B TiO2) mesoporous nanoparticles has been investigated. Batch experiments were conducted to study the effects of the main parameters affecting the photocatalytic process. The effects and interactions of most influenced parameters, such as substrate concentration and catalyst load, were evaluated and optimized by using a central composite design model and a response surface methodology. The results indicated that the dye degradation efficiency in the experimental domain investigated was mainly affected by the tested variables, as well as their interaction effects. Analysis of variance showed a high coefficient of determination value (R2 = 0.9947), thus ensuring a satisfactory adjustment of the first-order regression model (2FI model) with the experimental data. The obtained results also indicate that catalyst loading plays an important role in determining the removal efficiency of RR195 attributable to both photodegradation and adsorption process. Under optimal conditions (initial dye concentration (50 mg/L) and catalyst loading (2,000 mg/L), A/B TiO2 showed similar removal efficiency compared to that of commercial titania (Degussa P25). Also, at these conditions, complete degradation of RR195 can be achieved by both catalysts within 15 min under UV-A irradiation. The experiments demonstrated that dye removal on the prepared A/B TiO2 was facilitated by the synergistic effects between adsorption and photocatalysis. Photocatalytic mineralization of RR195 was monitored by total organic carbon. The recycling experiments confirmed the stability of the catalyst.


Anatase Brookite Azo dyes Photocatalysis Response surface methodology 

Supplementary material

11356_2012_1106_MOESM1_ESM.doc (68 kb)
ESM 1(DOC 68.5 kb)


  1. Abdullah M, Low GKC, Matthews RW (1990) Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J Phys Chem 94:6820–6825CrossRefGoogle Scholar
  2. Addamo M, Bellardita M, Di Paola A, Palmisano L (2006) Preparation and photoactivity of nanostructured anatase, rutile and brookite TiO2. Thin Films Chem Commun 4943–4945Google Scholar
  3. Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667CrossRefGoogle Scholar
  4. Anpo M, Shima T, Kadama S, Kubokawa Y (1987) Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2: size quantization effects and reaction intermediates. J Phys Chem 91:4305–4310CrossRefGoogle Scholar
  5. Antonopoulou M, Papadopoulos V, Konstantinou I (2012) Photocatalytic oxidation of treated municipal wastewaters for the removal of phenolic compounds: optimization and modeling using response surface methodology (RSM) and artificial neural networks (ANNs). J Chem Technol Biotechnol. doi:10.1002/jctb.3755
  6. Ardizzone S, Bianchi CL, Cappelletti G, Gialanella S, Pirola C, Ragaini V (2007) Tailored anatase/brookite nanocrystalline TiO2 the optimal particle features for liquid and gas-phase photocatalytic reactions. J Phys Chem C 111:13222–13231CrossRefGoogle Scholar
  7. Bakardjieva S, Stengl V, Szatmary L, Subrt J, Lukac J, Murafa N, Niznansky D, Cizek K, Jirkovskyc J, Petrova N (2006) Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity. J Mater Chem 16:1709–1716CrossRefGoogle Scholar
  8. Bandara J, Mielczarski JA, Kiwi J (2001a) Adsorption mechanism of chlorophenols on iron oxides, titanium oxide and aluminum oxide as detected by infrared spectroscopy. Appl Catal B Environ 34:307–320CrossRefGoogle Scholar
  9. Bandara J, Mielczarski JA, Lopez A, Kiwi J (2001b) Sensitized degradation of comparison with titanium oxide. Appl Catal B Environ 34:321–333CrossRefGoogle Scholar
  10. Belessi V, Lambropoulou D, Konstantinou I, Katsoulidis A, Pomonis P, Petridis D, Albanis T (2007) Structure and photocatalytic performance of TiO2/clay nanocomposites for the degradation of dimethachlor. Appl Catal B Environ 73:292–299CrossRefGoogle Scholar
  11. Belessi V, Romanos G, Boukos N, Lambropoulou D, Trapalis C (2009a) Removal of Reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles. J Hazard Mater 170:836–844CrossRefGoogle Scholar
  12. Belessi V, Lambropoulou D, Konstantinou I, Zboril R, Tucek J, Jancik D, Albanis T, Petridis D (2009b) Structure and photocatalytic performance of magnetically separable titania photocatalysts for the degradation of propachlor. Appl Catal B Environ 87:181–189CrossRefGoogle Scholar
  13. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovations, and discovery, 2nd edn. Wiley, HobokenGoogle Scholar
  14. Braun AM, Maurette M, Oliveros E (1991) Photochemical technology. Wiley, New YorkGoogle Scholar
  15. Chan SHS, Yeong Wu T, Juan JC, Teh CY (2011) Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J Chem Technol Biotechnol 86:1130–1158CrossRefGoogle Scholar
  16. Che H, Han S, Hou W, Liu A, Sun Y, Wang S, Cui X (2011) Thermally stable nanoporous nanocrystalline TiO2 with a bicrystalline (anatase–brookite) framework fabricated via combining the soft-templating with solid–liquid method. J Dispers Sci Technnol 32:692–701CrossRefGoogle Scholar
  17. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027CrossRefGoogle Scholar
  18. Cunningham J, Sayyed G (1990) Factors influencing efficiencies of TiO2 sensitised photodegradation. J Chem Soc Faraday Trans 86:3935–3941CrossRefGoogle Scholar
  19. Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12:214–219Google Scholar
  20. Design-Expert (2009) Software version 8.0.0 user’s guide. Stat-Ease, Inc. http://www.statease.com/dx8_man.html Accessed 14 Dec 2009
  21. Devi LG, Murthy BN, Kumar SG (2009) Heterogeneous photo catalytic degradation of anionic and cationic dyes over TiO2 and TiO2 doped with Mo6+ under solar light: correlation of dye structure and its adsorptive tendency on the degradation rate. Chemosphere 76:1163–1166CrossRefGoogle Scholar
  22. Di Paola A, Bellardita M, Ceccato R, Palmisano L, Parrino F (2009) Highly active photocatalytic TiO2 powders obtained by thermohydrolysis of TiCl4 in water. J Phys Chem C 113:15166–15174CrossRefGoogle Scholar
  23. Dutta S, Parsons SA, Bhattacharjee C, Jarvis P, Datta S, Bandyopadhyay S (2009) Kinetic study of adsorption and photo-decolorization of Reactive Red 198 on TiO2 surface. Chem Eng J 155:674–679CrossRefGoogle Scholar
  24. Gupta VK, Ali I (2008) Removal of endosulfan and methoxychlor from water on carbon slurry. Environ Sci Technol 42:766–770CrossRefGoogle Scholar
  25. Gupta VK, Mittal A, Gajbe V, Mittal J (2006) Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind Eng Chem Res 45(4):1446–1453CrossRefGoogle Scholar
  26. Gupta VK, Jain R, Mittal A, Mathur M, Sikarwar S (2007a) Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J Colloid Interface Sci 309:464–469CrossRefGoogle Scholar
  27. Gupta VK, Ali I, Saini VK (2007b) Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J Colloid Interface Sci 315(1):87–93CrossRefGoogle Scholar
  28. Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas (2009) Low-cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol 39(10):783–842CrossRefGoogle Scholar
  29. Gupta VK, Jain R, Nayak A, Agarwal S, Shrivastava M (2011a) Removal of the hazardous dye tartrazine by photodegradation on titanium dioxide surface. Mater Sci Eng C 31:1062–1067CrossRefGoogle Scholar
  30. Gupta VK, Jain R, Agarwal S, Shrivastava M (2011b) Kinetics of photocatalytic degradation of hazardous dye Tropaeoline 000 using UV/TiO2 in a UV reactor. Colloids Surf A Physicochem Eng Asp 378:22–26CrossRefGoogle Scholar
  31. Gupta VK, Gupta B, Rastogic A, Agarwald S, Nayaka A (2011c) A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-acid blue 113. J Hazard Mater 186:891–901CrossRefGoogle Scholar
  32. Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S (2012a) Photocatalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater Sci Eng C 32:12–17CrossRefGoogle Scholar
  33. Gupta VK, Jain R, Agarwal S, Nayak A, Shrivastava M (2012b) Photodegradation of hazardous dye quinoline-yellow catalyzed by TiO2. J Colloid Interface Sci 366:135–140CrossRefGoogle Scholar
  34. Hashimoto K, Hiroshi I, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44:8269–8285CrossRefGoogle Scholar
  35. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549CrossRefGoogle Scholar
  36. Ismail AA, Bahnemann DW (2011a) One-step synthesis of mesoporous platinum/titania nanocomposites as photocatalyst with enhanced photocatalytic activity for methanol oxidation. Green Chem 13:428–435CrossRefGoogle Scholar
  37. Ismail AA, Bahnemann DW (2011b) Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. J Mater Chem 21:11686–11707CrossRefGoogle Scholar
  38. Ismail AA, Kandiel TA, Bahnemann DW (2010) Novel (and better?) titania-based photocatalysts: brookite nanorods and mesoporous structures. J Photochem Photobiol A Chem 216:183–193CrossRefGoogle Scholar
  39. Kandiel TA, Feldhoff A, Robben L, Dillert R, Bahnemann DW (2010) Tailored titanium dioxide nanomaterials: anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem Mater 22:2050–2060CrossRefGoogle Scholar
  40. Khataee AR, Fathinia M, Aber S, Zarei M (2010) Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: intermediates identification. J Hazard Mater 181:886–897CrossRefGoogle Scholar
  41. Kobayashi M, Tomita K, Petrykin V, Yoshimura M, Kakihana M (2008) Direct synthesis of brookite-type titanium oxide by hydrothermal method using water-soluble titanium complexes. J Mater Sci 7:2158–2162CrossRefGoogle Scholar
  42. Kolen’ko YV, Churagulov BR, Kunst M, Mazerolles L, Colbeau-Justin C (2004) Photocatalytic properties of titania powders prepared by hydrothermal method. Appl Catal B Environ 54:51–58CrossRefGoogle Scholar
  43. Kominami H, Ishii Y, Kohno M, Konishi S, Kera Y, Ohtani B (2003) Nanocrystalline brookite-type titanium(IV) oxide photocatalysts prepared by a solvothermal method: correlation between their physical properties and photocatalytic activities. Catal Lett 9:141–147Google Scholar
  44. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14CrossRefGoogle Scholar
  45. Kositzi M, Poulios I, Samara K, Tsatsaroni E, Darakas E (2007) Photocatalytic oxidation of Cibacron Yellow LS-R. J Hazard Mater 146:680–685CrossRefGoogle Scholar
  46. Lambropoulou DA, Konstantinou IK, Albanis TA, Fernández-Alba AR (2011) Photocatalytic degradation of the fungicide Fenhexamid in aqueous TiO2 suspensions: identification of intermediates products and reaction pathways. Chemosphere 83:367–378CrossRefGoogle Scholar
  47. Li G, Gray KA (2007) Preparation of mixed-phase TiO2 nanocomposites via solvothermal processing. Chem Mater 19:1143–1146CrossRefGoogle Scholar
  48. Li Y, Lee N, Song JS, Lee EG, Kim S (2005) Synthesis and photocatalytic properties of nano bi-crystalline titania of anatase and brookite by hydrolyzing TiOCl2 aqueous solution at low temperatures. Res Chem Intermed 31:309–318CrossRefGoogle Scholar
  49. Li G, Chen L, Graham ME, Gray KA (2007a) A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: the importance of the solid–solid interface. J Mol Catal A Chem 275:30–35CrossRefGoogle Scholar
  50. Li G, Yu JC, Zhu J, Cao Y (2007b) Hierarchical mesoporous grape-like titania with superior recyclability and photoactivity. Microporous Mesoporous Mater 106:278–283CrossRefGoogle Scholar
  51. Li WK, Gong XQ, Lu G, Selloni A (2008) Different reactivities of TiO2 polymorphs: comparative DFT calculations of water and formic acid adsorption at anatase and brookite TiO2 surfaces. J Phys Chem C 112:6594–6596CrossRefGoogle Scholar
  52. Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng Y-H (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B Environ 68:1–11CrossRefGoogle Scholar
  53. Lin Y, Ferronato C, Deng N, Wu F, Chovelon J-M (2009) Photocatalytic degradation of methylparaben by TiO2: multivariable experimental design and mechanism. Appl Catal B Environ 88:32–41CrossRefGoogle Scholar
  54. Miyagi T, Kamei M, Mitsuhashi T, Ishigaki T, Yamazaki A (2004) Charge separation at the rutile/anatase interface: a dominant factor of photocatalytic activity. Chem Phys Lett 390:399–402CrossRefGoogle Scholar
  55. O’Neill C, Hawkes FR, Hawkes DL, Lourenco ND, Pinheiro HM et al (1999) Colour in textile effluents—sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74:1009–1018CrossRefGoogle Scholar
  56. Ohtani B (2008) Preparing articles on photocatalysis—beyond the illusions, misconceptions, and speculation. Chem Lett 37:217–229CrossRefGoogle Scholar
  57. Ovenstone J (2001) Preparation of novel titania photocatalysts with high activity. J Mater Sci 36:1325–1329CrossRefGoogle Scholar
  58. Ozawa T, Iwasaki M, Tada H, Akita T, Tanaka K, Ito S (2005) Low-temperature synthesis of anatase–brookite composite nanocrystals: the junction effect on photocatalytic activity. J Colloid Interface Sci 281:510–513CrossRefGoogle Scholar
  59. Papadam T, Xekoukoulotakis NP, Poulios I, Mantzavinos D (2007) Photocatalytic transformation of acid orange 20 and Cr(VI) in aqueous TiO2 suspensions. J Photochem Photobiol A Chem 186:308–315CrossRefGoogle Scholar
  60. Pelaez M, Falaras P, Likodimos V, Kontos AG, de la Cruz AA, O’Shea K, Dionysiou DD (2010) Synthesis, structural characterization and evaluation of sol-gel-based NF-TiO2 films with visible light-photoactivation for the removal of Microcystin-LR. Appl Catal B Environ 99:378–387CrossRefGoogle Scholar
  61. Prieto-Mahaney OO, Murakami N, Abe R, Ohtani B (2009) Correlation between photocatalytic activities and structural and physical properties of titanium(IV) oxide powders. Chem Lett 38:238–239CrossRefGoogle Scholar
  62. Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR, Zanoni MVB, Kajitvichyanukul P, Krishnan-Ayer R (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photochem Photobiol C Photochem Rev 9:171–192CrossRefGoogle Scholar
  63. Ranjit KT, Willner I, Bossmann SH, Braun AM (2001) Lanthanide oxide-doped titanium dioxide photocatalysts: novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid. Environ Sci Technol 35:1544–1549CrossRefGoogle Scholar
  64. Rauf MA, Meetani MA, Hisaindee S (2011) An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 27613–27Google Scholar
  65. Sahel K, Perol N, Chermette H, Bordes C, Derriche Z, Guillard C (2007) Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B-Isotherm of adsorption, kinetic of decolorization and mineralization. Appl Catal B Environ 77:100–109CrossRefGoogle Scholar
  66. Shao GS, Zhang XJ, Yuan ZY (2008) Preparation and photocatalytic activity of hierarchically mesoporous–macroporous TiO2-xNx. Appl Catal B Environ 82:208–218CrossRefGoogle Scholar
  67. Sleiman M, Vildozo D, Ferronato C, Chovelon J-M (2007) Photocatalytic degradation of azo dye Metanil Yellow: optimization and kinetic modeling using a chemometric approach. Appl Catal B Environ 77:1–11CrossRefGoogle Scholar
  68. Štengl V, Králová D (2011) Photoactivity of brookite–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of hydrothermally prepared brookite. Mater Chem Phys 129:794–801CrossRefGoogle Scholar
  69. Tian G, Fu H, Jing L, Xin B, Pan K (2008) Preparation and characterization of stable biphase TiO2 photocatalyst with high crystallinity, large surface area, and enhanced photoactivity. J Phys Chem C 112:3083–3089CrossRefGoogle Scholar
  70. Tsimas ES, Tyrovola K, Xekoukoulotakis NP, Diamadopoulos E, Mantzavinos D (2009) Simultaneous photocatalytic oxidation of As(III) and humic acid in aqueous TiO2 suspensions. J Hazard Mater 169:376–385CrossRefGoogle Scholar
  71. Vinu R, Spurti U, Akki MG (2010) Investigation of dye functional group on the photocatalytic degradation of dyes by nano-TiO2. J Hazard Mater 176:765–773CrossRefGoogle Scholar
  72. Yan MC, Chen F, Zhang JL, Anpo M (2005) Preparation of controllable crystalline titania and study on the photocatalytic properties. J Phys Chem B 109:8673–8678CrossRefGoogle Scholar
  73. Yang X, Ma F, Li K, Guo Y, Hu J, Li W, Huo M, Guo Y (2010) Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: new efficient photocatalyst for dye degradation. J Hazard Mater 175:429–438CrossRefGoogle Scholar
  74. Yao Y, Li G, Ciston S, Lueptow RM, Gray KA (2008) Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. Environ Sci Technol 42:4952–4957CrossRefGoogle Scholar
  75. Yu JC, Yu J, Ho W, Zhang L (2001) Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem Commun 1942–1943Google Scholar
  76. Yu JC, Yu J, Zhang L, Ho W (2002a) Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders. J Photochem Photobiol A Chem 148:263–271CrossRefGoogle Scholar
  77. Yu JC, Zhang LZ, Yu JG (2002b) Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework. Chem Mater 14:4647–4653CrossRefGoogle Scholar
  78. Yu JC, Zhang L, Zheng Z, Zhao J (2003a) Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem Mater 15:2280–2286CrossRefGoogle Scholar
  79. Yu J, Yu JC, Leung MKP, Ho W, Cheng B, Zhao X, Zhao (2003b) Effects of acidic and basic hydrolysis catalyst on the photocatalytic activity and microstructures of bimodal mesoporous titania. J Catal 21:769–778Google Scholar
  80. Yu J, Su Y, Cheng B, Zhou M (2006) Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method. J Mol Catal A Chem 258:104–112CrossRefGoogle Scholar
  81. Yu JG, Zhang LJ, Cheng B, Su YR (2007) Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania. J Phys Chem C 111:10582–10589CrossRefGoogle Scholar
  82. Zachariah A, Baiju KV, Shukla S, Deepa KS, James J, Warner KGK (2008) Synergistic effect in photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol-gel solvent mixing and calcinations. J Phys Chem C 112:11345–11356CrossRefGoogle Scholar
  83. Zhao B, Chen F, Jiao Y, Yang H, Zhang J (2011) Ag0-loaded brookite/anatase composite with enhanced photocatalytic performance towards the degradation of methyl orange. J Mol Catal A 348:114–119CrossRefGoogle Scholar
  84. Zhu H, Jiang R, Xiao L, Chang Y, Guan Y, Li X, Zeng G (2009) Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. J Hazard Mater 169:933–940CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Nikolaos Tzikalos
    • 1
  • Vassiliki Belessi
    • 2
  • Dimitra Lambropoulou
    • 1
  1. 1.Chemistry DepartmentAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Graphic ArtsTechnological Educational Institute of AthensAigaleoGreece

Personalised recommendations