Environmental Science and Pollution Research

, Volume 19, Issue 9, pp 3850–3858 | Cite as

Biochemical modifications in Pinus pinaster Ait. as a result of environmental pollution

  • Rosaria Acquaviva
  • Luca VanellaEmail author
  • Valeria Sorrenti
  • Rosa Santangelo
  • Liliana Iauk
  • Alessandra Russo
  • Francesca Savoca
  • Ignazio Barbagallo
  • Claudia Di Giacomo
Research Article


Exposure to chemical pollution can cause significant damage to plants by imposing conditions of oxidative stress. Plants combat oxidative stress by inducing antioxidant metabolites, enzymatic scavengers of activated oxygen and heat shock proteins. The accumulation of these proteins, in particular heat shock protein 70 and heme oxygenase, is correlated with the acquisition of thermal and chemical adaptations and protection against oxidative stress. In this study, we used Pinus pinaster Ait. collected in the areas of Priolo and Aci Castello representing sites with elevated pollution and reference conditions, respectively. The presence of heavy metals and the levels of markers of oxidative stress (lipid hydroperoxide levels, thiol groups, superoxide dismutase activity and expression of heat shock protein 70, heme oxygenase and superoxide dismutase) were evaluated, and we measured in field-collected needles the response to environmental pollution. P. pinaster Ait. collected from a site characterized by industrial pollution including heavy metals had elevated stress response as indicated by significantly elevated lipid hydroperoxide levels and decreased thiol groups. In particular, we observed that following a chronic chemical exposure, P. pinaster Ait. showed significantly increased expression of heat shock protein 70, heme oxygenase and superoxide dismutase. This increased expression may have protective effects against oxidative stress and represents an adaptative cellular defence mechanism. These results suggest that evaluation of heme oxygenase, heat shock protein 70 and superoxide dismutase expression in P. pinaster Ait. could represent a useful tool for monitoring environmental contamination of a region and to better understand mechanisms involved in plant defence and stress tolerance.


Heat shock protein 70 Heme oxygenase 1 Oxidative stress markers Priolo 



The authors thank Dr. Mike Wilkinson for proofreading the manuscript. This work was financed through grants by MURST (Ministero dell’Università e della Ricerca Scientifica e Tecnologica), Italy.


  1. Ali MB, Hahn EJ, Paek KY (2005) Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol Biochem 43:213–223. doi: 10.1016/j.plaphy.2005.01.007 CrossRefGoogle Scholar
  2. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutase (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341. doi: 10.1093/jexbot/53.372.1331 CrossRefGoogle Scholar
  3. Arduini I, Godbold DL, Onnis A (1996) Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. seedlings. Tree Physiol 15:411–415Google Scholar
  4. Balestrasse KB, Noriega GO, Batlle A, Tomaro ML (2005) Involvement of heme oxigenase as antioxidant defense in soybean nodules. Free Rad Res 39:145–151. doi: 10.1080/10715760400022319 CrossRefGoogle Scholar
  5. Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci 5:241–246. doi: 10.1016/S1360-1385(00)01628-9 CrossRefGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  7. Bytnerowicz A, Omasa K, Paoletti E (2006) Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective. Environ Pollut 147:438–445. doi: 10.1016/j.envpol.2006.08.028 CrossRefGoogle Scholar
  8. Casano LM, Gómez LD, Lascano HR, González CA, Trippi VS (1997) Inactivation and degradation of CuZn-SOD by active oxygen species in wheat chloroplasts exposed to photooxidative stress. Plant Cell Physiol 38:433–440CrossRefGoogle Scholar
  9. Chauhan H, Khurana N, Agarwal P, Khurana P (2011) Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Mol Genet Genomics 286:171–187. doi: 10.1007/s00438-011-0638-8 CrossRefGoogle Scholar
  10. Di Giacomo C, Acquaviva R, Lanteri R, Licata F, Licata A, Vanella A (2003) Non proteic antioxidant status in plasma of subjects with colon cancer. Exp Med Biol 228:525–528. doi: 10.1016/j.envpol.2006.08.028 Google Scholar
  11. Dias de Azevedo Neto N, Prisco JT, Enèas-Filho J, Medeiros JR, Gomes-Filho E (2005) Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J Plant Physiol 162:1114–1122. doi: 10.1016/j.jplph.2005.01.007 CrossRefGoogle Scholar
  12. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann Rev Physiol 61:243–282. doi: 10.1146/annurev.physiol.61.1.243 CrossRefGoogle Scholar
  13. Foyer CH, Lopez-Delgado H, Dat JE, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanism of acclimatory stress tolerance and signalling. Plant Physiol 100:241–254. doi: 10.1111/j.1399-3054.1997.tb04780.x CrossRefGoogle Scholar
  14. Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159. doi: 10.1016/S0168-9452(96)04528-1 CrossRefGoogle Scholar
  15. Giertych MJ, De Temmerman LO, Rachwal L (1997) Distribution of elements along the length of Scots pine needles in a heavily polluted and a control environment. Tree Physiol 17:697–703CrossRefGoogle Scholar
  16. Gifford DJ, Taleisnk E (1994) Heat-shock response of Pinus and Picea seedlings. Tree Physiol 14:103–110Google Scholar
  17. Godbold DL, Huttermann A (1985) Effect of zinc, cadmium and mercury on root elongation of Picea abies (Karst.) seedlings, and the significance of these metals to forest die-back. Environ Pollut 38:375–381. doi: 10.1016/0143-1471(85)90108-4 CrossRefGoogle Scholar
  18. Goycoolea C, Cardemil L (1991) Expression of heat shock proteins in seeds and during seedling growth of Araucaria araucana as a response to thermal stress. Plant Physiol Biochem 29:213–222Google Scholar
  19. Gozzelino R, Jenev V, Soares MP (2010) Mechanisms of cells protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354CrossRefGoogle Scholar
  20. Grulke NE, Paoletti E, Heath R (2007) Chronic vs. short-term acute O3 exposure effects on nocturnal transpiration in two Californian oaks. ScientificWorldJournal 7:134–140CrossRefGoogle Scholar
  21. Gurriero C, Bianchi F, Cairns J, Cori L (2011) Policies to clean up toxic industrial contaminated sites of Gela and Priolo: a cost-benefit analysis. Environ Health 10:68–78. doi: 10.1186/1476-069X-10-68 CrossRefGoogle Scholar
  22. Heikkila JJ (1993) Heat shock gene expression and development. I. An overview of fungal, plant and poikilothermic animal development systems. Dev Genetics 14:1–5CrossRefGoogle Scholar
  23. Helmisaari HS, Derome J, Nöjd P, Kukkola M (2007) Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiol 27:1493–1504CrossRefGoogle Scholar
  24. Hernandez LD, Vierling E (1993) Expression of low molecular weight heat-shock proteins under field conditions. Plant Physiol 101:1209–1216Google Scholar
  25. Kovtun Y, Chiu WL, Tena G, Shenn J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. PNAS 97:2940–2945. doi: 10.1073/pnas.97.6.2940 CrossRefGoogle Scholar
  26. Kupcinskienea E, Stiklieneb A, Judzentienec A (2008) The essential oil qualitative and quantitative composition in the needles of Pinus sylvestris L. growing along industrial transects. Environ Pollut 155:481–491. doi: 10.1016/j.envpol.2008.02.001 CrossRefGoogle Scholar
  27. Lai LS, Chang PC, Chang CT (2008) Isolation and characterization of superoxide dismutase from wheat seedlings. J Agric Food Chem 56:8121–8129. doi: 10.1021/jf800859f CrossRefGoogle Scholar
  28. Lin CT, Lin MT, Chen YT, Shaw JF (1995) Subunit interaction enhances enzymatic activity and stability of sweet potato cytosolic Cu/Zn superoxide dismutase purified by a His-tagged recombinant protein method. Plant Mol Biol 28:305–311. doi: 10.1007/BF00020249 CrossRefGoogle Scholar
  29. Lozano-Rodriguez E, Hernandez LE, Bonay P, Carpena-Ruiz RO (1997) Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J Exp Bot 306:123–128CrossRefGoogle Scholar
  30. Mandre M, Kask R, Pikk J, Ots K (2008) Assessment of growth and stemwood quality of Scots pine on territory influenced by alkaline industrial dust. Environ Monit Assess 138:51–63. doi: 10.1007/s10661-007-9790-3 CrossRefGoogle Scholar
  31. Manitatsevic S, Dunderski J, Matic G, Tuci B (2007) Seasonal variation in heat shock proteins Hsp70 and Hsp90 expression in an exposed and a shaded habitat of Iris pumila. Plant Cell Environ 30:1–11CrossRefGoogle Scholar
  32. Manninen S, Huttunen S (1995) Scots pine needles as bioindicators of sulphur deposition. Can J Forest Res 25:1559–1569. doi: 10.1139/x95-170 CrossRefGoogle Scholar
  33. Mansfield MA, Key JL (1987) Synthesis of the low molecular weight heat shock proteins in plants. Plant Physiol 84:1007–1017CrossRefGoogle Scholar
  34. Mazorra LM, Numez M, Hechavarria M, Coll F, Sanchez-Blanco MJ (2002) Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Plant Biol 45:593–596. doi: 10.1023/A:1022390917656 CrossRefGoogle Scholar
  35. Mehra RK, Tripathi RD (2000) Phytochelatins and metal tolerance. In: Agrawal SB, Agrawal M (eds) Environmental pollution and plant responses. CRC Press, Boca RatonGoogle Scholar
  36. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi: 10.1016/S1360-1385(02)02312-9 CrossRefGoogle Scholar
  37. National Environment Agency APAT (2010) Rilevamento di metalli in aghi di pino nella città di Gela e nella zona di Siracusa-Augusta. National Health InstituteGoogle Scholar
  38. Neill SJ, Desikan R, Hancock JT (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395CrossRefGoogle Scholar
  39. Nerg A, Kainulainen P, Vuorinen M, Hanso M, Holopainen JK, Kurkela T (1994) Seasonal and geographical variation of terpenes, resin acid and total phenolics in nursery grown seedlings of Scots pine (Pinus sylvestris L.). New Phytol 128:703–713. doi: 10.1111/j.1469-8137.1994.tb04034.x CrossRefGoogle Scholar
  40. Nieminen T, Helmisaari HS (1996) Nutrient retranslocation in the foliage of Pinus sylvestris L. growing along a heavy metal pollution gradient. Tree Physiol 16:825–831CrossRefGoogle Scholar
  41. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biot 51:730–750. doi: 10.1007/s002530051457 CrossRefGoogle Scholar
  42. Noriega GO, Tomaro ML, Batlle A (2003) Bilirubin is highly effective in preventing in vivo δ-aminolevulinic acid-induced oxidative cell damage. Biochim Biophys Acta 1638:173–178CrossRefGoogle Scholar
  43. Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2004) Heme oxygenase exerts a protective role against oxidative stress in soybean leaves. Biochem Bioph Res Co 323:1003–1008. doi: 10.1016/j.bbrc.2004.08.199 CrossRefGoogle Scholar
  44. Noriega GO, Yannarelli GG, Balestrasse KB, Batlle A, Tomaro ML (2007) The effect of nitric oxide on heme oxigenase gene expression in soybean leaves. Planta 226:1155–1163. doi: 10.1007/s00425-007-0561-8 CrossRefGoogle Scholar
  45. Palta JP (1990) Stress interaction at the cellular and membranes levels. HortSci 25:1377–1381Google Scholar
  46. Rascio N, Dalla Vecchia F, La Rocca N, Barbato R, Pagliano C, Raviolo M, Gonnelli C, Gabbrielli R (2008) Metal accumulation and damage in rice (cv. Vialone nano) seedlings exposed to cadmium. Environ Exp Bot 62:267–278CrossRefGoogle Scholar
  47. Reiter SW, Tyrrell RM (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radic Biol Med 28:289–309. doi: 10.1016/S0891-5849(99)00223-3 CrossRefGoogle Scholar
  48. Reyes MA, Corcurea LJ, Cardemil L (2003) Accumulation of HSP70 in Deschampsia antarctica Desv. leaves under thermal stress. Antarct Sci 15:345–352. doi: 10.1017/S0954102003001366 CrossRefGoogle Scholar
  49. Schöffl F, Prändl R, Reindl A (1998) Regulation of the heat-shock response. Plant Physiol 117:1135–1141. doi: 10.1104/pp. 117.4.1135 CrossRefGoogle Scholar
  50. Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365. doi: 10.1093/jexbot/53.372.1351 CrossRefGoogle Scholar
  51. Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898CrossRefGoogle Scholar
  52. Slooten L, Capiau K, Van Camp W, Van Montagu M, Sybesma C, Inze D (1995) Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts. Plant Physiol 107:737–750Google Scholar
  53. Sorger PK (1991) Heat shock factor and the heat shock response. Cell 65:363–366. doi: 10.1016/0092-8674(91)90452-5 CrossRefGoogle Scholar
  54. Sung DY, Vierling E, Guy CL (2001) Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol 126:789–800CrossRefGoogle Scholar
  55. Terry MJ, Linely PJ, Kochi T (2002) Making light of it: the role of plants haem oxygenases in phytochrome chromophore synthesis. Biochem Soc Trans 30:604–609. doi: 10.1042/BST0300604 CrossRefGoogle Scholar
  56. Van Breusegem F, Vranovà E, Dat JF, Inzè D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414. doi: 10.1016/S0168-9452(01)00452-6 CrossRefGoogle Scholar
  57. Vierling E (1991) The roles the heat-shock proteins in plants. Ann Rev Plant Phys 42:229–233. doi: 10.1146/annurev.pp.42.060191.003051 Google Scholar
  58. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:246–252. doi: 10.1016/j.tplants.2004.03.006 Google Scholar
  59. Xiang C, Oliver DJ (1998) Glutathione metabolic genes co-ordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550Google Scholar
  60. Yamamoto Y, Hachia A, Matsumoto H (1997) Oxidative damage to membranes by a combination of aluminium and iron in suspension-cultured tobacco cells. Plant Cell Physiol 38:1333–1339CrossRefGoogle Scholar
  61. Zenk HM (1996) Heavy metal detoxification in higher plants—a review. Gene 179:21–30. doi: 10.1016/S0378-1119(96)00422-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Rosaria Acquaviva
    • 1
  • Luca Vanella
    • 2
    Email author
  • Valeria Sorrenti
    • 1
  • Rosa Santangelo
    • 1
  • Liliana Iauk
    • 3
  • Alessandra Russo
    • 1
  • Francesca Savoca
    • 4
  • Ignazio Barbagallo
    • 1
  • Claudia Di Giacomo
    • 1
  1. 1.Department of Drug Science—Biochemistry SectionUniversity of CataniaCataniaItaly
  2. 2.Department of Physiology and Pharmacology, Health Education Building, College of MedicineUniversity of ToledoToledoUSA
  3. 3.Department of Bio-Medical SciencesUniversity of CataniaCataniaItaly
  4. 4.Department of BotanyUniversity of CataniaCataniaItaly

Personalised recommendations