Advertisement

Environmental Science and Pollution Research

, Volume 19, Issue 8, pp 3628–3635 | Cite as

A seasonal cycle of terrestrial inputs in Lake Van, Turkey

  • C. HuguetEmail author
  • S. Fietz
  • N. Moraleda
  • T. Litt
  • G. Heumann
  • M. Stockhecke
  • F. S. Anselmetti
  • M. Sturm
Research Article

Abstract

Lake Van in Turkey is the world's largest soda lake (607 km3). The lake's catchment area is estimated to be ∼12,500 km2, and the terrestrial input is carried through eolian, riverine, snowmelt and anthropogenic paths. Extent and seasonality of the terrestrial inputs to the lake have not been studied, but it is essential to evaluate its environmental status and to assess the use of environmental proxies to estimate the lake's response to climate changes. This study aims to measure seasonal changes in terrestrial input of natural and anthropogenic origin as recorded by the fluxes of pollen and biomarkers of soil bacteria and vascular or higher plants, as well as petrogenic biomarkers in monthly resolved sediment traps from August 2006 to July 2007. Fluxes of pollen, soil and higher plant biomarkers seem to be related to precipitation and snowmelt in autumn and spring. In addition, dust storms, which are common during the summer months, may have resulted in long-distance transport. Anthropogenic biomarker fluxes indicate year-round petrogenic contamination although some mature biomarker fluxes are higher in summer and in late winter–spring. The relative changes between petrogenic markers indicate variations in the pollutant sources.

Keywords

Seasonal particle cycle Contamination Biomarkers n-Alkanes Branched GDGTs Hopanes Steranes 

References

  1. Blaga CI, Reichart GJ, Schouten S, Lotter AF, Werne JP, Kosten S, Mazzeo N, Lacerot G, Sinninghe-Damsté JS (2010) Branched glycerol dialkyl glycerol tetraethers in lake sediments: can they be used as temperature and pH proxies? Org Geochem 41:1225–1234CrossRefGoogle Scholar
  2. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252CrossRefGoogle Scholar
  3. Bull ID, Lockheart MJ, Elhmmali MM, Roberts DJ, Evershed RP (2002) The origin of faeces by means of biomarker detection. Environ Int 27:647–654CrossRefGoogle Scholar
  4. Celenk S, Bicakci A (2005) Aerobiological investigation in Bitlis, Turkey. Ann Agric Environ Med 12:87–93Google Scholar
  5. Cooper JE, Bray EE (1963) A postulated role of fatty acids in petroleum formation. Geochimica Et Cosmochimica Acta 27:1113–1127CrossRefGoogle Scholar
  6. Cranwell PA (1973) Chain legth distribution of n-alkanes from lake sediemnts in relation to postglacial environmental change. Freshw Biol 3:259–265CrossRefGoogle Scholar
  7. Cranwell PA, Volkman JK (1981) Alkyl and steryl esters in a recent lacustrine sediment. Chem Geol 32:29–43CrossRefGoogle Scholar
  8. Escala M, Fietz S, Rueda G, Rosell-Melé A (2009) Analytical considerations for the use of the paleothermometer tetraether index(86) and the branched vs isoprenoid tetraether index regarding the choice of cleanup and instrumental conditions. Anal Chem 81:2701–2707CrossRefGoogle Scholar
  9. Faegri K, Iversen J (1989) Textbook of pollen analysis. Wiley, New YorkGoogle Scholar
  10. Fietz S, Martínez-Garcia A, Huguet C, Rosell-Melé A (2011) Constraints in the application of the BIT index as a terrestrial input proxy. Journal of Geophysical Research–Oceans. doi: 10.1029/2011JC007062
  11. Güven KC, Ozturk B, Unlu S, Gorgun M, Hanilci N (2004) Investigation on the sediment of Lake Van. Turkey, I-Oil content. J Black Sea Medit Environ 10:173–186Google Scholar
  12. Hopmans EC, Weijers JWH, Schefuss E, Herfort L, Sinninghe-Damsté JS, Schouten S (2004) A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett 224:107–116CrossRefGoogle Scholar
  13. Huguet C, Hopmans EC, Febo-Ayala W, Thompson DH, Sinninghe-Damsté JS, Schouten S (2006) An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem 37:1036–1041CrossRefGoogle Scholar
  14. Huguet C, Martens-Habbena W, Urakawa H, Stahl DA, Ingalls AE (2010) Comparison of extraction methods for quantitative analysis of core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in environmental samples. Limnol Oceanogr Methods 8:127–145CrossRefGoogle Scholar
  15. Huguet C, Fietz S, Stockhecke M, Sturm M, Anselmetti FS, Rosell-Melé A (2011) Biomarker seasonality study in Lake Van, Turkey. Org Geochem 42:1289–1298CrossRefGoogle Scholar
  16. Kaden H, Peeters F, Lorke A, Kipfer R, Tomonaga Y, Karabiyikoglu M (2010) Impact of lake level change on deep-water renewal and oxic conditions in deep saline Lake Van, Turkey. Water Resour Res 46:W11508. doi: 10.1029/2009WR008555 CrossRefGoogle Scholar
  17. Kadioglu M, Sen Z, Batur E (1997) The greatest soda-water lake in the world and how it is influenced by climatic change. Ann Geophys Atmos Hydrosph Space Sci 15:1489–1497Google Scholar
  18. Litt T, Krastel S, Sturm M, Kipfer R, Orcen S, Heumann G, Franz SO, Ulgen UB, Niessen F (2009) ‘PALEOVAN’, International Continental Scientific Drilling Program (ICDP): site survey results and perspectives. Quat Sci Rev 28:1555–1567CrossRefGoogle Scholar
  19. Litt T, Anselmetti FS, Cagatay MN, Kipfer R, Krastel S, Schmincke H-U, Sturm M (2011) A 500,000-year-long sediment archive drilled in eastern Anatolia. Eos Trans AGU 92:477–479. doi: 10.1029/2011EO510002 CrossRefGoogle Scholar
  20. Littmann T (1991) Dust storm frequency in Asia–climatic control and variability. Int J Climatol 11:393–412CrossRefGoogle Scholar
  21. Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289CrossRefGoogle Scholar
  22. Öğün E, Atalan E, Ozdemir K (2005) Some pollution parameters in water samples from Lake Van, Turkey. Fresenius Environ Bull 14:1031–1035Google Scholar
  23. Ourisson G, Albrecht P (1992) Hopanoids 1. Geohopanoids—the most abundant natural products on earth. Acc Chem Res 25:398–402CrossRefGoogle Scholar
  24. Peterse F, Kim J-H, Schouten S, Kristensen DK, Koc N, Sinninghe-Damsté JS (2009) Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway). Org Geochem 40:692–699CrossRefGoogle Scholar
  25. Reille M (1995) Pollen et spores d’Europe et d’Afrique du Nord, Supplément 1. Éditions du Laboratoire de botanique historique et palynologie, MarseilleGoogle Scholar
  26. Reille M (1998) Pollen et spores d’Europe et d’Afrique du Nord, Supplément 2. Éditions du Laboratoire de botanique historique et palynologie, MarseilleGoogle Scholar
  27. Reille M (1999) Pollen et spores d’Europe et d’Afrique du Nord, 2nd edn. Éditions du Laboratoire de botanique historique et palynologie, MarseilleGoogle Scholar
  28. Reimer A, Landmann G, Kempe S (2009) Lake Van, Eastern Anatolia, hydrochemistry and history. Aquat Geochem 15:195–222CrossRefGoogle Scholar
  29. Rethore G, Montier T, Le Gall T, Delepine P, Cammas-Marion S, Lemiegre L, Lehn P, Benvegnu T (2007) Archaeosomes based on synthetic tetraether-like lipids as novel versatile gene delivery systems. Chem Commun (Camb) 28:2054–2056CrossRefGoogle Scholar
  30. Schouten S, Huguet C, Hopmans EC, Kienhuis MVM, Sinninghe-Damsté JS (2007) Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal Chem 79:2940–2944CrossRefGoogle Scholar
  31. Sinninghe-Damsté JS, Schouten S, Hopmans EC, van Duin ACT, Geenevasen JAJ (2002) Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic Crenarchaeota. J Lipid Res 43:1641–1651CrossRefGoogle Scholar
  32. Stockhecke M (2008) The annual particle cycle of Lake Van: insights from space, sediments and water column. M.S. thesis, University of Zurich. pp 167Google Scholar
  33. Summons RE, Walter MR (1990) Molecular fossils and microfossils of prokaryotes and protists from proterozoic sedeimnts. Am J Sci 290A:212–244Google Scholar
  34. Volkman JK, Holdsworth DG, Neill GP, Bavor HJ (1992) Identification of natural, anthropogenic and petroleum-hydrocarbons in aquatic sediments. Sci Total Environ 112:203–219CrossRefGoogle Scholar
  35. Walsh EM, Ingalls AE, Keil RG (2008) Sources and transport of terrestrial organic matter in Vancouver Island fjords and the Vancouver-Washington margin: a multiproxy approach using delta C-13(org), lignin phenols, and the ether lipid BIT index. Limnol Oceanogr 53:1054–1063CrossRefGoogle Scholar
  36. Weijers JWH, Schouten S, Hopmans EC, Geenevasen JAJ, David ORP, Coleman JM, Pancost RD, Sinninghe-Damsté JS (2006) Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ Microbiol 8:648–657CrossRefGoogle Scholar
  37. Weijers JWH, Schouten S, Schefuss E, Schneider RR, Sinninghe-Damsté JS (2009) Disentangling marine, soil and plant organic carbon contributions to continental margin sediments: a multi-proxy approach in a 20,000 year sediment record from the Congo deep-sea fan. Geochim Cosmochim Acta 73:119–132CrossRefGoogle Scholar
  38. Wick L, Lemcke G, Sturm M (2003) Evidence of lateglacial and holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. Holocene 13:665–675CrossRefGoogle Scholar
  39. Zohary M (1973) Geobotanical foundations of the Middle East, 2 volumes. Gustav Fischer Verlag, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • C. Huguet
    • 1
    Email author
  • S. Fietz
    • 1
  • N. Moraleda
    • 1
  • T. Litt
    • 2
  • G. Heumann
    • 2
  • M. Stockhecke
    • 2
  • F. S. Anselmetti
    • 3
  • M. Sturm
    • 3
  1. 1.Institut de Ciència i Tecnologia Ambientals (ICTA)Universitat Autònoma de Barcelona (UAB)BellaterraSpain
  2. 2.Steinmann Institute of Geology, Mineralogy and PalaeontologyUniversity of BonnBonnGermany
  3. 3.Department of Surface Water Research and ManagementEawag, Swiss Federal Institute of Aquatic Science and TechnologyDubendorfSwitzerland

Personalised recommendations