Advertisement

Environmental Science and Pollution Research

, Volume 19, Issue 4, pp 1335–1340 | Cite as

Response to W. Kramer: The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities: comment (doi:10.1007/s11356-011-0644-8)

  • Hagen Scherb
  • Kristina Voigt
Short Research and Discussion

Abstract

Introduction

This paper is in response to criticism of our article “The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities” published in Environ Sci Pollut Res 18(5):697–707, 2011.

Methods

Our findings and methods concerning the disturbed human sex odds at birth have been criticized in this journal for being artifacts of data mining, that the concept of statistical significance was misunderstood, and that confounding factors have not been accounted for. Here, we show that this criticism has no basis. We applied well-established statistical methods to large official data sets, and confounding is less important at the level of secular sex odds trends in aggregated annual figures from countries or continents.

Results and conclusions

Moreover, our results are strengthened by recent findings concerning increased infant death sex odds in Germany and increased Down syndrome prevalence at birth across Europe after Chernobyl. Prompted by our studies, an official investigation in Lower Saxony, Germany, by the “Niedersächsisches Landesgesundheitsamt (NLGA)” confirmed our observation of severely escalated sex odds within 40 km distance from the nuclear storage site in Gorleben, Germany.

Keywords

Binomial distribution Radiation-induced genetic effects Sex ratio Statistical inference 

Notes

Acknowledgments

Our special thanks go to Dr. Gerhard Welzl, Helmholtz Center Munich, for providing statistical input, and to Dipl.-Ing. Ralf Kusmierz, Dipl.-Math. Karsten Rodenacker, and Dipl.-Math. Johannes Tritschler, Helmholtz Center Munich, for contributing to the content and style of our paper. We are also grateful to an anonymous reviewer for valuable suggestions. We are especially grateful to Prof. Walter Krämer for raising issues, which gave us the opportunity to clarify our previously published results as well as to underlie them by newer findings and considerations.

References

  1. Bonde JP, Wilcox A (2007) Ratio of boys to girls at birth. BMJ 334(7592):486–487CrossRefGoogle Scholar
  2. FRC (1962) Health implications of fallout from nuclear weapons testing through 1961. Report No. 3. May 1962. Report of the Federal Radiation Council (FRC). http://www.epa.gov/radiation/docs/federal/frc_rpt3.pdf. Accessed 9 Jan 2012.
  3. GNS (2008) Umweltüberwachung, Umgebungsüberwachung für das Transportbehälterlager (TBL), Abfalllager (ALG) und für die Pilot-Konditionierungsanlage (PKA). GNS Gesellschaft für Nuklear-Service mbH, Essen, Jahresbericht 2007, p. 54–55.Google Scholar
  4. Heimers A (2001) Untersuchungen zur biologischen Wirksamkeit der Strahlenexposition des Flugpersonals bei Interkontinentalflügen mittels strahleninduzierter Chromosomenaberrationen. In: Biology. Shaker, BremenGoogle Scholar
  5. James WH (2008) Evidence that mammalian sex ratios at birth are partially controlled by parental hormone levels around the time of conception. J Endocrinol 198(1):3–15CrossRefGoogle Scholar
  6. Krämer W (2011) The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities. Environ Sci Pollut Res Int 18(5):697–707CrossRefGoogle Scholar
  7. Kusmierz R, Voigt K, Scherb H (2010) Is the human sex odds at birth distorted in the vicinity of nuclear facilities (NF)? A preliminary geo-spatial-temporal approach. In: Greve K, Cremers AB (eds) 24th EnviroInfo 2010. Shaker, Bonn and Cologne, Germany, pp 616–626, October 6th - 8th 2010Google Scholar
  8. Lagutina IS, Mashkovich VP, Stroganov AA, Chernyaev AM (1989) Skyshine from photon radiation. Atomic Energy 66(2):118–124CrossRefGoogle Scholar
  9. Lehmann EL (1966) Testing statistical hypotheses, 4th edn. Wiley, New YorkGoogle Scholar
  10. Lerchl A (1998) Seasonality of sex ratio in Germany. Hum Reprod 13(5):1401–1402CrossRefGoogle Scholar
  11. Martuzzi M, Di Tanno ND, Bertollini R (2001) Declining trends of male proportion at birth in Europe. Arch Environ Health 56(4):358–364CrossRefGoogle Scholar
  12. Mathews TJ, Hamilton BE (2005) Trend analysis of the sex ratio at birth in the United States. Natl Vital Stat Rep 53(20):1–17Google Scholar
  13. NLGA (2011) Niedersächsisches Landesgesundheitsamt (NLGA). Veränderungen beim sekundären Geschlechterverhältnis in der Umgebung des Transportbehälterlagers Gorleben ab 1995 - Analysen auf Basis der Geburtsstatistiken der Bundesländer Brandenburg, Mecklenburg-Vorpommern, Sachsen-Anhalt sowie Niedersachsen. Editor: Niedersächsisches Landesgesundheitsamt, Roesebeckstr. 4 - 6, 30449 Hannover, September 2011; überarbeitete Version, Erstellt von: M. Hoopmann und K. Maaser. http://www.nlga.niedersachsen.de/download/60794. Accessed 9 Jan 2012.
  14. Przyborowski J, Wilenski H (1940) Homogeneity of results in testing samples from Poisson series. Biometrika 31:313–323Google Scholar
  15. Rueness J, Vatten L, Eskild A (2012) The human sex ratio: effects of maternal age. Hum Reprod 27(1):283–287CrossRefGoogle Scholar
  16. Scherb H, Voigt K (2009) Analytical ecological epidemiology: exposure–response relations in spatially stratified time series. Environmetrics 20(6):596–606. doi: 10.1002/env.958 CrossRefGoogle Scholar
  17. Scherb H, Voigt K (2011) The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities. Environ Sci Pollut Res Int 18(5):697–707CrossRefGoogle Scholar
  18. Scherb H, Weigelt E (2004) Cleft lip and cleft palate birth rate in Bavaria before and after the Chernobyl nuclear power plant accident. Mund Kiefer Gesichtschir 8(2):106–110CrossRefGoogle Scholar
  19. Scherb H, Voigt K, Kusmierz R (2011) Fact Sheet Gorleben Version 3.0, December 2011: Gender specific live births in the vicinity of Gorleben, Germany: Lower Saxony (1971–2010), Mecklenburg-West Pomerania (1990–2010), Brandenburg (1991–2009), and Saxony Anhalt (1991–2009). http://www.helmholtz-muenchen.de/ibb/homepage/hagen.scherb/FactSheetGorleben.pdf. Accessed 9 Jan 2012
  20. Sermage-Faure C, Laurier D, Goujon-Bellec S, Chartier M, Guyot-Goubin A, Rudant J, Hemon D, Clavel J (2012) Childhood leukemia around French nuclear power plants—the Geocap study, 2002–2007. Int J Cancer. doi: 10.1002/ijc.27425
  21. Sperling K, Neitzel H, Scherb H (2012) Evidence for an increase in trisomy 21 (Down syndrome) in Europe after the Chernobyl reactor accident. Genet Epidemiol 36:48–55Google Scholar
  22. Spix C, Schmiedel S, Kaatsch P, Schulze-Rath R, Blettner M (2008) Case–control study on childhood cancer in the vicinity of nuclear power plants in Germany 1980–2003. Eur J Cancer 44(2):275–284CrossRefGoogle Scholar
  23. Terrell ML, Hartnett KP, Marcus M (2011) Can environmental or occupational hazards alter the sex ratio at birth? A systematic review. Emerging Health Threats Journal 4:7109. doi: 103402/ehtjv4i07109 CrossRefGoogle Scholar
  24. Van Eimeren W, Faus-Kessler T, König K, Lasser R, Rediske G, Scherb H, Tritschler J, Weigelt E, Welzl G (1987) Statistisch-methodische Aspekte von epidemiologischen Studien über die Wirkung von Umweltfaktoren auf die menschliche Gesundheit (Gesundheitssystemforschung) (German Edition). Springer, BerlinGoogle Scholar
  25. Zieglowski V, Hemprich A (1999) Facial cleft birth rate in former East Germany before and after the reactor accident in Chernobyl. Mund Kiefer Gesichtschir 3(4):195–199CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institute of Biomathematics and BiometryHelmholtz Zentrum Muenchen–German Research Center for Environmental HealthNeuherbergGermany

Personalised recommendations