Environmental Science and Pollution Research

, Volume 19, Issue 6, pp 2305–2312 | Cite as

Superior photodecomposition of pyrene by metal ion-loaded TiO2 catalyst under UV light irradiation

Research Article



The photocatalytic degradation of pyrene under UV (125 W Hg-Arc, 10.4 mW/cm2) irradiation of TiO2 aqueous suspension has been found to be highly improved with the dissolved transition metal ions like Cu2+, Fe3+, Ag+, and Au3+, etc. As the reduction potential of these metals lies below the conduction band (CB) position (−0.1 eV) of TiO2, the photoexcited electron transfer occurs more readily and reduces electron–hole recombination rate. Therefore, it has a beneficial influence on the photocatalytic ability of TiO2 because of rapid Fermi energy equilibrium between the CB of TiO2 and its surface adsorbed metal ions.

Results and discussion

The Fermi level is referred to as the electrochemical potential and plays an important role in the band theory of solids. When metal and semiconductor are in contact, electron migration from photoirradiated semiconductor to the deposited metal occurs at the interface until two Fermi levels equilibrate and enhanced the photocatalytic activity of semiconductor photocatalyst. Ni2+ having more negative reduction potential (−0.25 eV) than the CB of TiO2 imparts negligible co-catalytic activity to TiO2 photoreaction. It also revealed that loading of Au3+ ions displayed higher degradation rate of pyrene than Au photodeposition. Furthermore, when the amount of dissolved Fe+3 and Au3+ ions gradually increases from 0.1 to 2 wt.%, the pyrene photodecomposition rate also become faster.


TiO2 photoactivity Pyrene photodecomposition Preadsorbed pyrene Metal-loaded TiO2 catalyst Photocatalytic degradation of pyrene Metal ions-TiO2 photoactivity 



We are extremely thankful to Degussa Company, Germany for the gift sample of P-25 TiO2 powders.


  1. Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667CrossRefGoogle Scholar
  2. Blumer M (1961) Benzopyrenes in soils. Sci 134:474–475CrossRefGoogle Scholar
  3. Brezová V, Blažková A, Borošová E, Cˇeppan M, Fiala R (1995) The influence of dissolved metal ions on the photocatalytic degradation of phenol in aqueous TiO2 suspensions. J Mol Catal A Chem 98:109–116CrossRefGoogle Scholar
  4. Cai QY, Mo CH, Li YH, Zeng QY, Katsoyiannis A, Wu QT, Férard JF (2007) Occurrence and assessment of polycyclic aromatic hydrocarbons in soils from vegetable fields of the Pearl River Delta, South China. Chemosphere 68:159–168. doi: 10.1016/j.chemosphere.2006.12.015 CrossRefGoogle Scholar
  5. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679CrossRefGoogle Scholar
  6. Chung MK, Hu R, Cheung KC, Wang MH (2007) Pollutants in Hong Kong soils: polycyclic aromatic hydrocarbons. Chemosphere 67:464–473CrossRefGoogle Scholar
  7. Clark CD, De Bruyn WJ, Ting J, Scholle W (2007) Solution medium effects on the photochemical degradation of pyrene in water. J Photochem Photobiol A Chem 186:342–348CrossRefGoogle Scholar
  8. Cordeiro DS, Corio P (2009) Electrochemical and photocatalytic reactions of polycyclic aromatic hydrocarbons investigated by Raman spectroscopy. J Braz Chem Soc 20:80–87CrossRefGoogle Scholar
  9. Das S, Muneer M, Gopidas KR (1994) Photocatalytic degradation of wastewater pollutants. Titanium-dioxide-mediated oxidation of polynuclear aromatic hydrocarbons. J Photochem Photobiol A Chem 77:83–88CrossRefGoogle Scholar
  10. Dong D, Li P, Li X, Zhao Q, Zhang Y, Jia C, Li P (2010) Investigation on the photocatalytic degradation of pyrene on soil surfaces using nanometer anatase TiO2 under UV irradiation. J Hazard Mater 174:859–863CrossRefGoogle Scholar
  11. Dunstan TDJ, Mauldln RF, Jlnxlan Z, Hipps AD, Wehry EL, Mamantov G (1989) Adsorption and photodegradation of pyrene on magnetic, carbonaceous, and mineral subfractions of coal stack ash. Environ Sci Technol 23:303–308CrossRefGoogle Scholar
  12. Gupta VK, Ali I (2008) Removal of endosulfan and methoxychlor from water on carbon slurry. Environ Sci Technol 42:766–770CrossRefGoogle Scholar
  13. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manage 90:2313–2342CrossRefGoogle Scholar
  14. Gupta VK, Mittal A, Gajbe V (2005) Adsorption and desorption studies of a water soluble dye, quinoline yellow, using waste materials. J Colloid Interface Sci 284:89–98CrossRefGoogle Scholar
  15. Gupta VK, Mittal A, Gajbe V, Mittal J (2006a) Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind Eng Chem Res 45:1446–1453CrossRefGoogle Scholar
  16. Gupta VK, Mittal A, Jain R, Mathur M, Sikarwar S (2006b) Adsorption of Safranin-T from wastewater using waste materials- activated carbon and activated rice husks. J Colloid Interface Sci 303:80–86CrossRefGoogle Scholar
  17. Gupta VK, Mittal A, Kurup L, Mittal J (2006c) Adsorption of a hazardous dye, erythrosine, over hen feathers. J Colloid Interface Sci 304:52–57CrossRefGoogle Scholar
  18. Gupta VK, Ali I, Saini VK (2007a) Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J Colloid Interface Sci 315:87–93CrossRefGoogle Scholar
  19. Gupta VK, Jain R, Mittal A, Mathur M, Sikarwar S (2007b) Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J Colloid Interface Sci 309:464–469CrossRefGoogle Scholar
  20. Gupta VK, Jain R, Varshney S (2007c) Removal of reactofix golden yellow 3 RFN from aqueous solution using wheat husk-an agricultural waste. J Hazard Mater 142:443–448CrossRefGoogle Scholar
  21. Gupta VK, Mittal A, Gajbe V, Mittal J (2008) Adsorption of basic fuchsin using waste materials—bottom ash and deoiled soya—as adsorbents. J Colloid Interface Sci 319:30–39CrossRefGoogle Scholar
  22. Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas (2009) Low-cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Env Sci Technol 39:783–842CrossRefGoogle Scholar
  23. Gupta VK, Jain R, Nayak A, Agarwal S, Shrivastava M (2011) Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface. Mater Sci Eng C 31:1062–1067CrossRefGoogle Scholar
  24. He C, Asi MA, Xiong Y, Shu D, Li X (2009) Photoelectrocatalytic degradation of organic pollutants in aqueous solution using a Pt-TiO2 film. Int J Photoengergy 2009:1–7. doi: 10.1155/2009/634369. CrossRefGoogle Scholar
  25. Hussain A, Tirnazi SH, Maqbool U, Asi M, Chauqhtai FA (1994) Studies of the effects of temperatures and solar radiation on volatilization, mineralization and binding of 14C- DDT in soil under laboratory conditions. J Environ Sci Health B 29:141–151CrossRefGoogle Scholar
  26. Kamat PV (2002) Photoinduced transformations in semiconductor–metal nanocomposite assemblies. Pure Appl Chem 74:1693–1706CrossRefGoogle Scholar
  27. Kot-Wasik A, Dabrowska D, Namieśnik J (2004) Photodegradation and biodegradation study of benzo(a)pyrene in different liquid media. J Photochem Photobiol A Chem 168:109–115CrossRefGoogle Scholar
  28. Kou J, Li Z, Yuan Y, Zhang H, Wang Y, Zou Z (2009) Visible-light-induced oxidation of polycyclic aromatic hydrocarbons over tantalum oxynitride photocatalysts. Environ Sci Technol 43:2919–2924CrossRefGoogle Scholar
  29. Kumar V, Kothiyal NC (2011) Distribution behaviour of polycyclic aromatic hydrocarbons in roadside soil at traffic intercepts within developing cities. Int J Environ Sci Tech 8:63–72Google Scholar
  30. Litter MI (1999) Heterogeneous photocatalysis transition metal ions in photocatalytic systems. Appl Catal B Environ 23:89–114CrossRefGoogle Scholar
  31. Luqueno FF, Encinas CV, Marsch R, Suarez CM, Vázquez E (2011) Microbial communities to mitigate contamination of PAHs in soil-possibilities and challenges: a review. Environ Sci Pollut Res 18:12–30CrossRefGoogle Scholar
  32. Massei AM, Ollivon D, Garban B, Teil MJ, Blanchard M, Chevreuil M (2004) Distribution and spatial trends of PAHs and PCBs in soils in the Seine River basin, France. Chemosphere 55:555–565CrossRefGoogle Scholar
  33. Mittal A, Gupta VK (2010) Adsorptive removal and recovery of the azo dye Eriochrome Black T. Toxicol Environ Chem 92:1813–1823CrossRefGoogle Scholar
  34. Mittal A, Mittal J, Kurup L, Singh AK (2006) Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials—bottom ash and de-oiled soya as adsorbents. J Hazard Mater 138:95–105CrossRefGoogle Scholar
  35. Mittal A, Mittal J, Malviya A, Gupta VK (2009) Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption. J Colloid Interface Sci 340:16–26CrossRefGoogle Scholar
  36. Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010) Decoloration treatment of a hazardous triarylmethane dye, light green SF (Yellowish) by waste material adsorbents. J Colloid Interface Sci 342:518–527CrossRefGoogle Scholar
  37. Mrowetz M, Villa A, Prati L, Selli E (2007) Effects of Au nanoparticles on TiO2 in the photocatalytic degradation of an azo dye. Gold Bull 40:154–160CrossRefGoogle Scholar
  38. Munoz MJL, Aguado J, Ruperez B (2007) The influence of dissolved transition metals on the photocatalytic degradation of phenol with TiO2. Res Chem Intermed 33:377–392CrossRefGoogle Scholar
  39. Nakajima A (1977) Variation in the vibrational structure of fluorescence spectra of naphthalene and pyrene in water and in aqueous surfactant solutions. Bull Chem Soc Jpn 50:2473–2474CrossRefGoogle Scholar
  40. Negishi N, Fujii T, Anpo M (1993) Characteristics of the fluorescence spectra of pyrene molecules during the sol to gel to xerogel transitions of silica–titania binary oxide systems. Langmuir 9:3320–3323CrossRefGoogle Scholar
  41. Netto ADP, Moreira JC, Dias AEXO, Arbilla G, Ferreira LFV, Oliveira AS, Barek J (2000) Evaluation of human contamination with polycyclic aromatic hydrocarbons (PAHs) and their nitrated derivatives (NHPAs): a review of methodology. Quim Nova 23:765–773CrossRefGoogle Scholar
  42. Niu JF, Chen JW, Martens D, Quan X, Yang FL, Kettrup A, Schramm KW (2003) Photolysis of polycyclic aromatic hydrocarbons adsorbed on spruce [Pice abies (L.) Karst.] needles under sunlight irradiation. Environ Pollut 123:39–45CrossRefGoogle Scholar
  43. Nosaka Y, Norimatsu K, Miyama H (1984) The function of metals in metal-compounded semiconductor photocatalysts. Chem Phys Lett 106:128–131CrossRefGoogle Scholar
  44. Pal B, Sharon M (2000) Photodegradation of polyaromatic hydrocarbons over thin film of TiO2 nanoparticles; a study of intermediate photoproducts. J Mol Catal A: Chem 160:453–460CrossRefGoogle Scholar
  45. Pelizzetti E, Borgarello M, Minero C, Pramauro E, Borgarello E, Serpone E (1988) Photocatalytic degradation of polychlorinated dioxins and polychlorinated biphenyls in aqueous suspensions of semiconductors irradiated with simulated solar light. Chemosphere 17:499–510CrossRefGoogle Scholar
  46. Ping L, Zhang C, Zhu Y, Wu M, Hu X, Li Z, Zhao H (2011) Biodegrading of pyrene by a newly isolated pseudomonas putida PL2. Biotechnol Bioproc Eng 16:1000–1008CrossRefGoogle Scholar
  47. Ranjit KT, Varadarajan TK, Viswanathan B (1996) Photocatalytic reduction of nitrogen to ammonia over noble metal-loaded TiO2. J Photochem Photobiol A Chem 96:181–185CrossRefGoogle Scholar
  48. Reyes CA, Sigman ME, Arce R, Barbas JT, Dabestani R (1998) Photochemistry of acenaphthene at a silica gel/air interface. J Photochem Photobiol A: Chem 112:277–283CrossRefGoogle Scholar
  49. Reyes CA, Medina M, Hernandez CZ, Cedeno MZ, Arce R, Rosario O, Sterffenson DM, Ivanov IN, Sigman M, Dabestani R (2000) Photochemistry of pyrene on unactivated and activated silica surfaces. Environ Sci Technol 34:415–421CrossRefGoogle Scholar
  50. Sabate J, Bayona JM, Solanas AM (2001) Photolysis of PAHs in aqueous phase by UV irradiation. Chemosphere 44:119–124CrossRefGoogle Scholar
  51. Sclafani A, Palmisano L, Davi E (1991) Photocatalytic degradation of phenol in aqueous polycrystalline TiO2 dispersions: the influence of Fe+3, Fe+2 and Ag+ on the reaction rate. J Photochem Photobiol A Chem 56:113–123CrossRefGoogle Scholar
  52. Sheng W, Jincai Z, Guoying S, Jiamo F, Pingan P (2003) Photocatalytic reactions of pyrene at TiO2/water interfaces. Chemosphere 50:111–119CrossRefGoogle Scholar
  53. Subramanian V, Wolf EE, Kamat PV (2003) Influence of metal/metal ion concentration on the photocatalytic activity of TiO2–Au composite nanoparticles. Langmuir 19:469–474CrossRefGoogle Scholar
  54. Subramanian V, Eduardo E, Wolf E, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J Am Chem Soc 126:4943–4950CrossRefGoogle Scholar
  55. Wen S, Zhao J, Sheng G, Fu J, Peng P (2002) Photocatalytic reactions of phenanthrene at TiO2/water interfaces. Chemosphere 46:871–877CrossRefGoogle Scholar
  56. Wood A, Giersig M, Mulvaney P (2001) Fermi level equilibration in quantum dot-metal nanojunctions. J Phys Chem B 105:8810–8815CrossRefGoogle Scholar
  57. Wu CG, Chao CC, Kuo FT (2004) Enhancement of the photo catalytic performance of TiO2 catalysts via transition metal modification. Catal Today 97:103–112CrossRefGoogle Scholar
  58. Yoshikawa T, Ruhr LP, Flory W, Giamalva D, Church DF, Pryor W (1985) Toxicity of polycyclic aromatic hydrocarbons: I. Effect of phenanthrene, pyrene, and their ozonized products on blood chemistry in rats. Toxicol Appl Pharmacol 79:218–226CrossRefGoogle Scholar
  59. Zhang L, Li P, Gong Z, Li X (2008) Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light. J Hazard Mater 158:478–484CrossRefGoogle Scholar
  60. Zhao X, Quan X, Zhao HM, Chen S, Chen JW, Zhao YZ (2004) Different effects of humic substances on photodegradation of p, p′-DDT on soil surfaces in the presence of TiO2 under UV and visible light. J Photochem Photobiol A Chem 167:177–183CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of Chemistry and BiochemistryThapar UniversityPatialaIndia

Personalised recommendations