Advertisement

Environmental Science and Pollution Research

, Volume 19, Issue 5, pp 1677–1686 | Cite as

Comparison of two wild rodent species as sentinels of environmental contamination by mine tailings

  • E. Tovar-Sánchez
  • L. T. Cervantes
  • C. Martínez
  • E. Rojas
  • M. Valverde
  • M. L. Ortiz-Hernández
  • P. Mussali-Galante
Research Article

Abstract

Background

Contamination with heavy metals is among the most hazardous environmental concerns caused by mining activity. A valuable tool for monitoring these effects is the use of sentinel organisms. Particularly, small mammals living inside mine tailings are an excellent study system because their analysis represents a realistic approach of mixtures and concentrations of metal exposure.

Purpose

We analyzed metal tissue concentrations and DNA damage levels for comparison between genders of a sentinel (Peromyscus melanophrys) and a nonsentinel (Baiomys musculus) species. Also, the relationship between DNA damage and the distance from the contamination source was evaluated.

Methods

This study was conducted in an abandoned mine tailing at Morelos, Mexico. Thirty-six individuals from both species at the exposed and reference sites were sampled. Metal concentrations in bone and liver of both species were analyzed by atomic absorption spectrophotometry, and DNA damage levels were assayed using the alkaline comet assay.

Results

In general, concentrations of zinc, nickel, iron, and manganese were statistically higher in exposed individuals. A significant effect of the organ and the site on all metal tissue concentrations was detected. Significant DNA damage levels were registered in the exposed group, being higher in B. musculus. Females registered higher DNA damage levels than males. A negative relationship between distance from the mine tailing and DNA damage in B. musculus was observed.

Conclusions

We consider that B. musculus is a suitable species to assess environmental quality, especially for bioaccumulable pollutants—such as metals—and recommend that it may be considered as a sentinel species.

Keywords

Baiomys musculus Peromyscus melanophrys Heavy metals DNA damage Comet assay 

Notes

Acknowledgments

The authors thank Edith Rivas, M. Mora Jarvio, Evodio Rendon Alquicira, and G. Rangel Altamirano for the technical assistance. This research was supported by Programa de Mejoramiento al Profesorado scholarship to L.T.C.R. and Consejo Nacional de Ciencia y Tecnología scholarship to C.M.B.

References

  1. Basu N, Scheuhammer AM, Bursian SJ, Elliot J, Rouvinen-Watt K, Man Chan H (2007) Mink as a sentinel species in environmental health. Environ Res 103:130–144CrossRefGoogle Scholar
  2. Batty J, Leavitt R, Biondo N, Polin D (1990) An ecotoxicological study of a population of white-footed mouse inhabiting a polychlorinated biphenyls-contaminated area. Arch Environ Contam Toxicol 19:283–290CrossRefGoogle Scholar
  3. Bickham J, Sandhu S, Hebert P, Chikhi L, Athwal R (2000) Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology. Mutat Res 463:33–51CrossRefGoogle Scholar
  4. Bukowski JA, Wartemberg D (1997) An alternative approach for investigating the carcinogenicity of indoor air pollution: pets as sentinels of environmental cancer risk. Environ Health Perspect 105:1312–1319CrossRefGoogle Scholar
  5. Chavez C, Espinosa L (2005) Baiomys musculus (Merriam, 1892). In: Ceballos G, Oliva G (eds) Los mamíferos silvestres de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Fondo de Cultura Económica, Mexico, pp 667–668Google Scholar
  6. Colborn T, Smolen MJ (1996) Epidemiological analysis of persistent organochlorine contaminants in cetaceans. Rev Environ Contam Toxicol 146:91–172CrossRefGoogle Scholar
  7. Coues E (1874) Synopsis of the Muridae in North America. Proc Acad Nat Sci Phila 3:173–196Google Scholar
  8. Dimsoski P, Toth G (2001) Development of DNA-based microsatellite marker technology for studies of genetic diversity in stressor impacted populations. Ecotoxicology 10:229–232CrossRefGoogle Scholar
  9. Dorado O, Maldonado B, Arias D, Sorani V, Ramírez R, Leyva E (2005) Programa de conservación y manejo Reserva de la Biosfera Sierra de Huautla. Comisión Nacional de Áreas Naturales Protegidas, MexicoGoogle Scholar
  10. Erry BV, Macnair MR, Meharg AA, Shore RF (2000) Arsenic contamination in wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) on abandoned mine sites in southwest Britain. Environ Pollut 110:179–187CrossRefGoogle Scholar
  11. Frenzilli G, Nigro M, Lyons BP (2009) The comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res 681:80–92CrossRefGoogle Scholar
  12. Furness RW, Nettleship DN (1991) Seabirds as monitors of changing marine environments. Int Ornithol Congr 20:2237–2279Google Scholar
  13. George JC (1999) Birds as bioindicators of ecotoxicological effects of heavy metal pollution. J Anim Morphol Physiol 46:1–22Google Scholar
  14. Guttman SI (1994) Population genetic structure and ecotoxicology. Environ Health Perspect 102:97–100CrossRefGoogle Scholar
  15. Hartman A, Speit G (1997) The contribution of cytotoxicity to DNA effects in the single cell gel test (comet assay). Toxicol Lett 90:183–188CrossRefGoogle Scholar
  16. INEGI (2001) Conteo Nacional de Población y Vivienda, MexicoGoogle Scholar
  17. INEGI (2004) Información Geográfica del Estado de Morelos, MexicoGoogle Scholar
  18. INEGI (2009) Información Geográfica del Estado de Morelos, MexicoGoogle Scholar
  19. Komarnicki GJ (2000) Tissue, sex and age specific accumulation of heavy metals (Zn, Cu, Pb, Cd) by populations of the mole (Talpa europaea L.) in a central urban area. Chemosphere 41:1593–1602CrossRefGoogle Scholar
  20. Laurinolli M, Bendell-Young LI (1996) Copper, zinc, and cadmium concentrations in Peromyscus maniculatus sampled near an abandoned copper mine. Arch Environ Contam Toxicol 30:481–486CrossRefGoogle Scholar
  21. Levengood J, Heske E (2008) Heavy metal exposure, reproductive activity and demographic patterns in white-footed mice (Peromyscus leucopus) inhabiting a contaminated floodplain wetland. Sci Total Environ 389:320–328CrossRefGoogle Scholar
  22. Lopes PA, Viegas-Crespo AM, Nunes AC, Pinheiro T, Marques C, Santos MC, Mathias ML (2002) Influence of age, sex, and sexual activity on trace element levels and antioxidant enzyme activities in field mice (Apodemus sylvaticus) and (Mus spretus). Biol Trace Elem Res 85:227–239CrossRefGoogle Scholar
  23. Martínez-Pacheco M (2008) Evaluación de los efectos genotóxicos de metales presentes en el agua de bebida de la población de Hauautla, Morelos. Dissertation. Universidad Nacional Autónoma de MéxicoGoogle Scholar
  24. Méndez-Gómez J, García-Vargas GG, López-Carrillo L, Calderón-Aranda ES, Gómez A, Vera E, Valverde M, Cebrián ME, Rojas E (2008) Genotoxic effects of environmental exposure to arsenic and lead on children in region Lagunera, Mexico. Ann N Y Acad Sci 1140:358–367CrossRefGoogle Scholar
  25. Merriam C (1892) Description of nine new mammals collected by E.W. Nelson in the states of Colima and Jalisco, Mexico. Proc Biol Soc Wash 7:164–174Google Scholar
  26. Moore M, Depledge M, Readman J, Leonard D (2004) An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutat Res 552:247–268CrossRefGoogle Scholar
  27. Mugford CA, Kedderis GL (1998) Sex dependent metabolism of xenobiotics. Drug Metab Rev 30:441–498CrossRefGoogle Scholar
  28. Mussali-Galante P (2008) Estudio sobre la inducción de daño al ADN en sangre periférica de individuos expuestos a metales en al agua de bebida, en la población de Huautla, Morelos. M.Sc. thesis. Universidad Nacional Autónoma de MéxicoGoogle Scholar
  29. Mussali-Galante P, Fortoul T (2008) Atmospheric pollution. In: Maes F (ed) Environmental research progress, Nova Science Publishing, pp 147–160Google Scholar
  30. Mussali-Galante P, Ávila M, Piñón G, Martínez G, Rodríguez V, Rojas M, Ávila M, Fortoul TI (2005) DNA damage as an early biomarker of effect in human health. Toxicol Ind Health 21:155–166CrossRefGoogle Scholar
  31. Musser GG, Carleton MD (2005) Superfamily Muroidea. In: Wilson DE, Reeder DM (eds) Mammal species of the world a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, pp 894–1531Google Scholar
  32. National Research Council (1991) Animals as sentinels of environmental health hazards. Committee on Animals as Monitors of Environmental Hazards. National Academy Press, WashingtonGoogle Scholar
  33. O’Brien DJ, Kaneene JB, Poppenga RH (1993) The use of mammals as sentinels for human exposure to toxic contaminants in the environment. Environ Health Perspect 99:351–368CrossRefGoogle Scholar
  34. O’Conner TP (2002) National distribution of chemical concentrations of mussels and oysters in the USA. Mar Environ Res 53:117–143CrossRefGoogle Scholar
  35. Park JH, Park E (2011) Influence of iron-overload on DNA damage and its repair in human leukocytes in vitro. Mutat Res 718:56–61Google Scholar
  36. Pascoe G, Blanchet R, Linder G (1994) Bioavailability of metals and arsenic to small mammals at a mining waste-contaminated wetland. Arch Environ Contam Toxicol 27:44–50CrossRefGoogle Scholar
  37. Pastor N, Baos R, López-Lázaro M, Jovani R, Tella J, Hajji N, Hiraldo F, Cortés F (2004) A 4 year follow-up analysis of genotoxic damage in birds of the Doñana area (south west Spain) in the wake of the 1998 mining waste spill. Mutagenesis 19(1):61–65CrossRefGoogle Scholar
  38. Peakall D (1992) Animal biomarkers as pollution indicators. Chapman and Hall, LondonCrossRefGoogle Scholar
  39. Phelps K, McBee K (2008) Ecological characteristics of small mammal communities at a superfund site. Am Midi Nat 1:57–68Google Scholar
  40. Pra D, Rech-Frenke SI, Giulian R, Yoneama ML, Ferraz-Diaz J, Erdtmann B, Pegas-Henriques JA (2008) Genotoxicity and mutagenicity of iron and copper in mice. Biometals 21:289–297CrossRefGoogle Scholar
  41. Rivas E (2006) Dieta de Baiomys musculus (Merriam, 1982) en la Sierra de Huautla y su relación con la perturbación y la estacionalidad. Dissertation. Universidad Autónoma de Estado de Morelos, MexicoGoogle Scholar
  42. Rojas E, López MC, Valverde M (1999) Single cell gel electrophoresis assay: methodology and applications. J Chromatogr 722:225–254CrossRefGoogle Scholar
  43. Rzedowski J (2006) Vegetación de México. Fondo de Cultura Económica, MexicoGoogle Scholar
  44. Sánchez CH, Romero MLA (1992) Mastofauna silvestre del ejeido el Limón, municipio de Tepalcingo, Morelos. Universidad Ciencia y Tecnol 2:87–95Google Scholar
  45. Sánchez-Chardi A, Oliveira-Ribeiro C, Nadal J (2009) Metals in liver and kidneys and the effects of chronic exposure to pyrite mine pollution in the shrew Crocidura russula inhabiting the protected wetland of Doñana. Chemosphere 76:387–394CrossRefGoogle Scholar
  46. Scheirs J, Coan A, Covaci A, Beernaert J, Kayawe M, Caturla M, Wolf H, Baert P, Van-Oostveldt P, Verhagen R, Blust R, Coen W (2006) Genotoxicity in wood mice (Apodemus sylvaticus) along a pollution gradient: exposure age, and gender-related effects. Environ Toxicol Chem 25:2154–2162CrossRefGoogle Scholar
  47. Smith P, Cobb G, Harper F, Adair B, McMurry S (2002) Comparison of white-footed mice and rice rats as biomonitors of polychlorinated biphenyl and metal contamination. Environ Pollut 119:261–268CrossRefGoogle Scholar
  48. Statsoft (1998) STATISTICA. For Windows. Manual version 6.0. Statsoft, OklahomaGoogle Scholar
  49. Talmage S, Walton B (1991) Small mammals as monitors of environmental contaminants. Rev Environ Contam Toxicol 119:47–145CrossRefGoogle Scholar
  50. Theodorakis CW (2001) Integration of genotoxic and population genetic endpoints in biomonitoring and risk assessment. Ecotoxicology 10:245–256CrossRefGoogle Scholar
  51. Tremblay A, Lesbarreres D, Merritt T, Wilson C (2008) Genetic structure and phenotypic plasticity of yellow perch (Perca flavescens) populations influences by habitat, predation, and contamination gradients. Integr Environ Assess Manag 4:264–266Google Scholar
  52. Valverde M, López MC, López I, Sánchez I, Fortoul T, Ostrosky-Wegman P, Rojas E (1997) DNA damage in leukocytes and bucal and nasal epithelial cells of individuals exposed to air pollution in Mexico city. Environ Mol Mutagen 30:147–152CrossRefGoogle Scholar
  53. Volke ST, Velasco TA, De la Rosa PA, Solórzano OG (2004) Evaluación de tecnologías de remediación para suelos contaminados con metales. Etapa I. Secretaría de Medio Ambiente y Recursos Naturales, MexicoGoogle Scholar
  54. Volke ST, Velasco TA, De la Rosa PA, Solórzano OG (2005) Evaluación de tecnologías de remediación para suelos contaminados con metales. Etapa II. Secretaría de Medio Ambiente y Recursos Naturales, MexicoGoogle Scholar
  55. Wells RS, Rhinehart WL, Hansen LJ, Sweeney JC, Townsend FI, Stone R, Casper DR, Scott MD, Hohn AA, Rowles TK (2004) Bottlenose dolphins as marine ecosystem sentinels: developing a Elath monitoring system. Ecohealth 1:246–254CrossRefGoogle Scholar
  56. Werre F, Ortiz-Hernández L (2000) Monografía geologica-minera del estado de Morelos. Consejo de Recursos Minerales, MexicoGoogle Scholar
  57. Zar J (2010) Biostatistical analysis. Prentice-Hall, New-JerseyGoogle Scholar
  58. Zelikoff JT (1998) Biomarkers of immunotoxicity in fish and other non-mammalian sentinel species: predictive value for mammals? Toxicology 129:63–71CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • E. Tovar-Sánchez
    • 1
  • L. T. Cervantes
    • 1
  • C. Martínez
    • 1
  • E. Rojas
    • 2
  • M. Valverde
    • 2
  • M. L. Ortiz-Hernández
    • 3
  • P. Mussali-Galante
    • 2
  1. 1.Departamento de Sistemática y Evolución, Centro de Investigación en Biodiversidad y ConservaciónUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  2. 2.Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico
  3. 3.Centro de Investigaciones en BiotecnologíaUniversidad Autónoma del Estado de MorelosCuernavacaMexico

Personalised recommendations