Advertisement

Environmental Science and Pollution Research

, Volume 19, Issue 4, pp 1131–1143 | Cite as

Simultaneous immobilization of metals and arsenic in acidic polluted soils near a copper smelter in central Chile

  • Valeska Cárcamo
  • Elena Bustamante
  • Elizabeth Trangolao
  • Luz María de la Fuente
  • Michel Mench
  • Alexander Neaman
  • Rosanna Ginocchio
Research Article

Abstract

Introduction

Acidic and metal(oid)-rich topsoils resulted after 34 years of continuous operations of a copper smelter in the Puchuncaví valley, central Chile. Currently, large-scale remediation actions for simultaneous in situ immobilization of metals and As are needed to reduce environmental risks of polluted soils. Aided phytostabilization is a cost-effective alternative, but adequate local available soil amendments have to be identified and management options have to be defined.

Materials and methods

Efficacy of seashell grit (SG), biosolids (B), natural zeolite (Z), and iron-activated zeolite (AZ), either alone or in mixtures, was evaluated for reducing metal (Cu and Zn) and As solubilization in polluted soils under laboratory conditions. Perennial ryegrass was used to test phytotoxicity of experimental substrates.

Results

Soil neutralization to a pH of 6.5 with SG, with or without incorporation of AZ, significantly reduces metal (Cu and Zn) solubilization without affecting As solubilization in soil pore water; furthermore, it eliminates phytotoxicity and excessive metal(oid) accumulation in aerial plant tissues. Addition of B or Z to SG-amended soil does not further reduce metal solubilization into soil pore water, but increase As solubilization due to excessive soil neutralization (pH > 6.5); however, no significant As increase occurs in aerial plant tissues.

Conclusion

Simultaneous in situ immobilization of metal(oid) in acidic topsoils is possible through aided phytostabilization.

Keywords

Natural zeolite Biosolids Seashell grit Metal phytotoxicity Ryegrass 

Notes

Acknowledgments

The present study was funded by yhe FONDECYT grant project 1085005. The authors would like to thank Paola Arata of Aguas Andinas S.A., Luis Cerda of Andayem Ltda., and Eduardo Barbieri of Sociedad Contractual Minera Aceituno for providing the amendments.

References

  1. Adriano DC (2001) Trace elements in terrestrial environments. Biogeochemistry, bioavailability, and risk of metals. Springer, New YorkGoogle Scholar
  2. Arienzo M, Adamo P, Cozzolino V (2004) The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Sci Total Environ 319:13–25CrossRefGoogle Scholar
  3. Arshad MA (2008) Soil salinity and salinization. In: Chesworth W (ed) Encyclopedia of soil science. Springer, Dordrecht, pp 699–704CrossRefGoogle Scholar
  4. Berti WWR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals—using plants to clean up the environment. Wiley, New York, pp 71–88Google Scholar
  5. Bes C, Mench M (2008) Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilisation. Environ Pollut 156:1128–1138CrossRefGoogle Scholar
  6. Bonnin D (2000) Method of removing arsenic species from an aqueous medium using modified zeolite minerals. United States Patent. 10pGoogle Scholar
  7. Bourg ACM (1995) Speciation of heavy metals in soils and groundwater and implications for their natural and provoked mobility. In: Salomons W, Forstner U, Mader P (eds) Heavy metals. Problems and solutions. Springer, Berlin, pp 19–31Google Scholar
  8. Brown S, Henry CL, Chaney R, Compton H, De Volder P (2003) Using municipal biosolids in combination with other residuals to restore metal- contaminated mining areas. Plant Soil 249:203–215CrossRefGoogle Scholar
  9. Draper NR, Smith H (1988) Applied regression analysis. John Wiley, New YorkGoogle Scholar
  10. ECUS (1996) Trace metal distributions in soils of the Puchuncaví Valley near the Ventanas Copper Smelter, Region V, Chile. Technical Report. ECUS, SheffieldGoogle Scholar
  11. Environmental Resources Management (1993) Environmental project. Ventanas region, Chile. Vol. 1: final report. Environmental Resources Limited, LondonGoogle Scholar
  12. Friesl W, Friedl J, Platzer K, Horak O, Gerzabek MH (2006) Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiment. Environ Pollut 144:40–50CrossRefGoogle Scholar
  13. Ginocchio R (1994) Morfología dinámica: ¿una estrategia de adquisición de nutrientes en plantas herbáceas perennes? Rev Chil Hist Nat 67:121–127Google Scholar
  14. Ginocchio R (2000) Effects of a copper smelter on a grassland community in the Puchuncavi valley, Chile. Chemosphere 41:15–23CrossRefGoogle Scholar
  15. Ginocchio R, Rodríguez PH, Badilla-Ohlbaum R, Allen HE, Lagos GE (2002) Effect of soil copper content and pH on copper uptake of selected vegetables grown under controlled conditions. Environ Toxicol Chem 21:117–125CrossRefGoogle Scholar
  16. Ginocchio R, Carvallo G, Toro I, Bustamante E, Silva Y, Sepulveda N (2004) Microspatial variation of soil metal pollution and plant recruitment near a copper smelter in central Chile. Environ Pollut 127:343–352CrossRefGoogle Scholar
  17. Ginocchio R, Sánchez P, de la Fuente LM, Camus I, Bustamante E, Silva Y, Urrestarazu P, Torres JC, Rodríguez PH (2006) Agricultural soils spiked with copper mine wastes and copper concentrate: implications for copper bioavailability and bioaccumulation. Environ Toxicol Chem 25:712–718CrossRefGoogle Scholar
  18. Ginocchio R, de la Fuente LM, Sánchez P, Bustamante E, Silva Y, Urrestarazu P, Rodríguez PH (2009) Soil acidification as a confounding factor on metal phytotoxicity in soils spiked with copper-rich mine wastes. Environ Toxicol Chem 28:2069–2081CrossRefGoogle Scholar
  19. Goecke P, Ginocchio R, Mench M, Neaman A (2011) The effect of amendments on development of Lolium perenne in soils affected by copper mining activities. Int J Phytoremediation 13:552–566CrossRefGoogle Scholar
  20. González I, Muena V, Cisternas M, Neaman A (2008) Acumulación de cobre en una comunidad vegetal afectada por contaminación minera en el valle de Puchuncaví, Chile central. Rev Chil Hist Nat 81:279–291Google Scholar
  21. Haering KC, Daniels WL, Feagley SE (2000) Reclaiming mined land with biosolids, manures and papermill sludge. In: Barnhisel RI et al (eds) Reclamation of drastically disturbed lands. Monograph #41. American Society of Agronomy, Madison, pp 615–644Google Scholar
  22. Janos P, Vávrová J, Herzogová L, Pilarová V (2010) Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: a sequential extraction study. Geoderma 159:335–341CrossRefGoogle Scholar
  23. Jongman RHG, Ter Braak CJF, Van Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants. CRC, Ann. ArborGoogle Scholar
  25. Keith LH (1996) Compilation of EPA’s sampling and analysis methods, 2nd edn. Lewis, Boca RatonCrossRefGoogle Scholar
  26. Klute A (1986) Methods of soil analysis. Physical and mineralogical methods, vol. 1. American Society of Agronomy, WisconsinGoogle Scholar
  27. Kumpiene J, Ore S, Renella G, Mench M, Lagerkvist A, Maurice C (2006) Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ Pollut 144:62–69CrossRefGoogle Scholar
  28. Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soils using amendments. A review. Waste Manag 28:215–225CrossRefGoogle Scholar
  29. Lee SH, Kim EY, Park H, Yun J, Kim JG (2011) In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma 161:1–7CrossRefGoogle Scholar
  30. Lock K, Waegeneers N, Smolders E, Criel P, Van Eeckhout H, Janssen CR (2006) Effect of leaching and aging on the bioavailability of lead to the springtail Folsomia candida. Environ Toxicol Chem 25:2006–2010CrossRefGoogle Scholar
  31. Lombi E, Hamon RE, McGrath SP, McLaughlin MJ (2003) Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a nonlabile colloidal fraction of metals using isotopic techniques. Environ Sci Technol 37:979–984CrossRefGoogle Scholar
  32. Lombi E, Hamon RE, Wieshammer G, McLaughlin MJ, McGrath SP (2004) Assessment of the use of industrial by-products to remediate a copper- and arsenic-contaminated soil. J Environ Qual 33:902–910CrossRefGoogle Scholar
  33. Lopareva-Pohu A, Verdin A, Garçon G, Lounes-Hadj Sahraoui A, Pourrut B, Debiane D, Waterlot C, Laruelle F, Bidar G, Douay F, Shirali P (2011) Influence of fly ash aided phytostabilization of Pb, Cd and Zn highly contaminated soils on Lolium perenne and Trifolium repens metal transfer and physiological stress. Environ Pollut 159:1721–1729CrossRefGoogle Scholar
  34. Marcar NE (1987) Salt tolerance in the genus Lolium (ryegrass) during germination and growth. Aust J Agric Res 38:297–307CrossRefGoogle Scholar
  35. Mench M, Vansgrosveld J, Lepp N, Edwards R (1998) Physico-chemical aspects and efficiency of trace element immobilization by soil amendments. In: Vangronsveld J, Cunningham S (eds) Metal-contaminated soils: in situ inactivation and phytorestoration. Springer, Berlin, pp 151–182Google Scholar
  36. Mench M, Manceau A, Vangronsveld J, Clijster H, Mocquot B (2000) Capacity of soil amendments in lowering the phytoavailability of sludge borne zinc. Agronomie 20:383–397CrossRefGoogle Scholar
  37. Mench M, Vangronsveld J, Beckx C, Ruttens A (2006) Progress in assisted natural remediation of an arsenic contaminated polluted soil. Environ Pollut 144:51–61CrossRefGoogle Scholar
  38. Mench M, Lepp N, Bert V, Schwitzguébel JP, Gawronski SW, Schöder P, Vangronsveld J (2010) Success and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST action 859. J Soils Sediments 10:1039–1070CrossRefGoogle Scholar
  39. Moirou A, Xenidis A, Paspaliaris I (2001) Stabilization of Pb, Zn, and Cd contaminated soil by means of natural zeolite. Soil Sediment Contam 10:251–267CrossRefGoogle Scholar
  40. Neaman A, Reyes L, Trolard F, Bourrié G, Sauve S (2009) Copper mobility in contaminated soils of the Puchuncaví valley, central Chile. Geoderma 150:359–366CrossRefGoogle Scholar
  41. Noble JC, Marshall C (1983) The population biology of plants with clonal growth. II. The nutrient strategy and modular physiology of Carex arenaria. J Ecol 71:865–877CrossRefGoogle Scholar
  42. Onyango M, Kojima Y, Matsuda H, Ochieng A (2003) Adsorption kinetics of arsenic removal from groundwater by iron-modified zeolite. J Chem Eng Jpn 36:1516–1522CrossRefGoogle Scholar
  43. Rachou J, Gagnon C, Sauvé S (2007) Use of an ion-selective electrode for free copper measurements in low salinity and low ionic strength matrices. Environ Chem 4:90–97CrossRefGoogle Scholar
  44. Richards LA (1985) Diagnóstico y rehabilitación de suelos salinos y sódicos. Manual de Agricultura Nº 60. 6ta. Edición. Editorial Limusa, MexicoGoogle Scholar
  45. Rooney CP, Zhao F-J, McGrath SP (2007) Phytotoxicity of nickel in a range of European soils: influence of soil properties, Ni solubility and speciation. Environ Pollut 145:596–605CrossRefGoogle Scholar
  46. Ruttens A, Colpaert JV, Mench M, Boisson J, Carleer R, Vangronsveld J (2006) Phytostabilization of a metal contaminated sandy soil. II: influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Environ Pollut 144:533–539CrossRefGoogle Scholar
  47. Santibáñez C, Ginocchio R, Varnero MT (2007) Evaluation of nitrate leaching from mine tailings amended with biosolids under Mediterranean type climate conditions. Soil Biol Biochem 39:1333–1340CrossRefGoogle Scholar
  48. Santibáñez C, Verdugo C, Ginocchio R (2008) Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Sci Total Environ 395:1–10CrossRefGoogle Scholar
  49. Sauvé S, McBride M, Norvell W, Hendersho W (1997) Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter. Water Air Soil Pollut 100:133–149CrossRefGoogle Scholar
  50. Sauvé S, Hendershot W, Allen H (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH and total metal burden. Environ Sci Technol 34:1125–1131CrossRefGoogle Scholar
  51. Simon L (2005) Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Environ Geochem Heal 27:289–300CrossRefGoogle Scholar
  52. Skeaff JM, Thibault Y, Hardy DJ (2011) A new method for the characterisation and quantitative speciation of base metal smelter stack particulates. Environ Monit Assess 177:165–192CrossRefGoogle Scholar
  53. Stofella PJ, Kahn BA (2001) Compost utilization in horticultural cropping systems. CRC Press, Boca RatonCrossRefGoogle Scholar
  54. Stuckey JW, Neaman A, Ravella R, Komarneni S, Martínez CE (2009) Highly charged swelling mica reduces Cu bioavailability in Cu-contaminated soils. Environ Pollut 157:12–16CrossRefGoogle Scholar
  55. Tsadilas CD, Matsi T, Barbayiannis N, Dimoyiannis D (1995) Influence of sewage sludge application on soil properties and on distribution and availability of heavy metal fractions. Comm Soil Sci Plant Anal 26:2603–2619CrossRefGoogle Scholar
  56. U.S. EPA (1995) Test methods for evaluating solid waste: physical/chemical methods, 3rd edn. Office of Solid Waste, The Environmental Protection Agency, Springfield, EPA 530/ SW-846Google Scholar
  57. U.S. EPA (2007) The use of soil amendments for remediation, revitalization, and reusue. EPA 542-R-07-013. Office of Superfund Remediation and Technology Innovation (OSRTI). EPA/National Service Center for Environmental Publications, CincinnatiGoogle Scholar
  58. USDA (2004) Soil survey laboratory methods manual. Soil Survey Investigations Report Nº 42, version 4.0, Lincoln: National Soil Survey Center, Natural Resources Conservation Service, United States Department of AgricultureGoogle Scholar
  59. Verdugo C, Sánchez P, Santibáñez C, Urrestarazu P, Bustamante E, Silva Y, Gourdon D, Ginocchio R (2011) Efficacy of lime, biosolids and mycorrhiza for the phytostabilization of sulfidic copper tailings in Chile: a greenhouse experiment. Int J Phytoremediation 13:107–125CrossRefGoogle Scholar
  60. Vulkan R, Zhao F-J, Barbosa-Jefferson V, Preston S, Paton GI, Tipping E, McGrath S (2000) Copper speciation and impacts on bacterial biosensors in the pore water of copper-contaminated soils. Environ Sci Technol 34:5115–5121CrossRefGoogle Scholar
  61. Wallace A, Terry RE (1998) Handbook of soil conditioners. Substances that enhance the physical properties of soil. Marcel Dekker, New YorKGoogle Scholar
  62. Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood CliffsGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Valeska Cárcamo
    • 1
  • Elena Bustamante
    • 2
  • Elizabeth Trangolao
    • 2
  • Luz María de la Fuente
    • 2
  • Michel Mench
    • 3
  • Alexander Neaman
    • 4
  • Rosanna Ginocchio
    • 2
  1. 1.Facultad de Ciencias AgronómicasUniversidad de ChileSantiagoChile
  2. 2.Centro de Investigación Minera y MetalúrgicaVitacuraChile
  3. 3.UMR BIOGECO INRA 1202, Ecologie des CommunautésBordeauxFrance
  4. 4.Facultad de Agronomía, Pontificia Universidad Católica de ValparaísoCentro Regional de Estudios en Alimentos Saludables (CREAS)QuillotaChile

Personalised recommendations