Environmental Science and Pollution Research

, Volume 19, Issue 4, pp 1144–1158

Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin

  • Atul K. Srivastava
  • Sachchidanand Singh
  • S. Tiwari
  • D. S. Bisht
Research Article



The present work is aimed to understand direct radiation effects due to aerosols over Delhi in the Indo-Gangetic Basin (IGB) region, using detailed chemical analysis of surface measured aerosols during the year 2007.


An optically equivalent aerosol model was formulated on the basis of measured aerosol chemical compositions along with the ambient meteorological parameters to derive radiatively important aerosol optical parameters. The derived aerosol parameters were then used to estimate the aerosol direct radiative forcing at the top of the atmosphere, surface, and in the atmosphere.


The anthropogenic components measured at Delhi were found to be contributing ∼72% to the composite aerosol optical depth (AOD0.5 ∼0.84). The estimated mean surface and atmospheric forcing for composite aerosols over Delhi were found to be about −69, −85, and −78 W m−2 and about +78, +98, and +79 W m−2 during the winter, summer, and post-monsoon periods, respectively. The anthropogenic aerosols contribute ∼90%, 53%, and 84% to the total aerosol surface forcing and ∼93%, 54%, and 88% to the total aerosol atmospheric forcing during the above respective periods. The mean (±SD) surface and atmospheric forcing for composite aerosols was about −79 (±15) and +87 (±26) W m−2 over Delhi with respective anthropogenic contributions of ∼71% and 75% during the overall period of observation.


Aerosol induced large surface cooling, which was relatively higher during summer as compared to the winter suggesting an increase in dust loading over the station. The total atmospheric heating rate at Delhi averaged during the observation was found to be 2.42 ± 0.72 K day−1, of which the anthropogenic fraction contributed as much as ∼73%.


Anthropogenic aerosols Composite aerosols Direct radiative forcing Atmospheric heating rate 


  1. Alpert P et al (1998) Quantification of dust-forced heating of the lower troposphere. Nature 395:367–370CrossRefGoogle Scholar
  2. Andrews E, Sheridan PJ, Fiebig M, McComiskey A, Ogren JA, Arnott P, Covert D, Elleman R, Gasparini R, Collins D, Jonsson H, Schmid B, Wang J (2006) Comparison of methods for deriving aerosol asymmetry parameter. J Geophys Res 111:D05S04. doi:10.1029/2004JD005734 CrossRefGoogle Scholar
  3. Ångström A (1964) The parameters of atmospheric turbidity. Tellus 16:64–75CrossRefGoogle Scholar
  4. Attri AK, Kumar U, Jain VK (2001) Formation of ozone by fireworks. Nature 411:1015CrossRefGoogle Scholar
  5. Babu SS, Satheesh SK, Moorthy KK (2002) Aerosol radiative forcing due to enhanced black carbon at an urban site in India. Geophys Res Lett 29(18):1880. doi:10.1029/2002GL015826 CrossRefGoogle Scholar
  6. Badarinath KVS, Latha KM (2006) Direct radiative forcing from black carbon aerosols over urban environment. Adv Space Res 37(12):2183–2188CrossRefGoogle Scholar
  7. Bergstrom RW, Pilewskie P, Russell PB, Redemann J, Bond TC, Quinn PK, Sierau B (2007) Spectral absorption properties of atmospheric aerosols. Atmos Chem Phys 7:5937–5943CrossRefGoogle Scholar
  8. Chung CE, Ramanathan V, Kim D, Podgorny IA (2005) Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J Geophys Res 110:D24207. doi:10.1029/2005JD006356 CrossRefGoogle Scholar
  9. Das SK, Jayaraman A, Mishra A (2008) Fog-induced variations in aerosol optical and physical properties over the Indo-Gangetic Basin and impact to aerosol radiative forcing. Ann Geophys 26:1345–1354CrossRefGoogle Scholar
  10. Derimian Y, Karnieli A, Kaufman YJ, Andreae MO, Andreae TW, Dubovik O, Maenhaut W, Koren I (2008) The role of iron and black carbon in aerosol light absorption. Atmos Chem Phys 8:3623–3637CrossRefGoogle Scholar
  11. Dey S, Tripathi SN (2008) Aerosol direct radiative effects over Kanpur in the Indo-Gangetic basin, northern India: Long-term (2001–2005) observations and implications to regional climate. J Geophys Res 113:D04212. doi:10.1029/2007JD009029 CrossRefGoogle Scholar
  12. Dey S, Tripathi SN, Singh RP, Holben BN (2004) Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. J Geophys Res 109:D20211. doi:10.1029/2004JD004924 CrossRefGoogle Scholar
  13. Dey S, Tripathi SN, Singh RP, Holben BN (2005) Seasonal variability of aerosol parameters over Kanpur, an urban site in Indo-Gangetic basin. Adv Space Res 36:778–782CrossRefGoogle Scholar
  14. Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O'Neill NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res 104:31333–31349CrossRefGoogle Scholar
  15. Ganguly D, Gadhavi H, Jayaraman A, Rajesh TA, Mishra A (2005) Single scattering albedo of aerosols over the central India: implications for the regional aerosol radiative forcing. Geophys Res Lett 32:L18803. doi:10.1029/2005GL023903 CrossRefGoogle Scholar
  16. Ganguly D, Jayaraman A (2006) Physical and optical properties of aerosols over an urban location in western India: implications for shortwave radiative forcing. J Geophys Res 111:D24207. doi:10.1029/2006JD007393 CrossRefGoogle Scholar
  17. Ganguly D, Jayaraman A, Rajesh TA, Gadhavi H (2006) Wintertime aerosol properties during foggy and non-foggy days over urban center Delhi and their implications for shortwave radiative forcing. J Geophys Res 111:D15217. doi:10.1029/2005JD007029 CrossRefGoogle Scholar
  18. Gautam R, Liu Z, Singh RP, Hsu NC (2009) Two contrasting dust-dominant periods over India observed from MODIS and CALIPSO data. Geophys Res Lett 36:L06813. doi:10.1029/2008GL036967 CrossRefGoogle Scholar
  19. Guttikunda SK, Carmichael GR, Calori G, Eck C, Woo JH (2003) The contribution of mega cities to regional sulfur pollution in Asia. Atmos Environ 37(1):11–22CrossRefGoogle Scholar
  20. Hess M, Koepke P, Schultz I (1998) Optical properties of aerosols and clouds: the software package OPAC. Bull Am Meteorol Soc 79:831–844CrossRefGoogle Scholar
  21. Houghton JT, Ding Y, Griggs DJ, Nouguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis, pp 881. Cambridge Univ. Press, New YorkGoogle Scholar
  22. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: the physical science basis: contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Chapter 2, pp 129Google Scholar
  23. Jethva H, Satheesh SK, Srinivasan J (2005) Seasonal variability of aerosols over the Indo-Gangetic basin. J Geophys Res 110:D21204. doi:10.1029/2005JD005938 CrossRefGoogle Scholar
  24. Kaufman YJ, Boucher O, Tanre D, Chin M, Remer LA, Takemura T (2005) Aerosol anthropogenic component estimated from satellite data. Geophys Res Lett 32:L17804. doi:10.1029/2005GL023125 CrossRefGoogle Scholar
  25. Kiehl JT, Briegle BP (1993) The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 260:311–314CrossRefGoogle Scholar
  26. Lau K-M, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dynam 26(7–8):855–864. doi:10.1007/s00382-006-0114-z CrossRefGoogle Scholar
  27. Lemaître C, Flamant C, Cuesta J, Raut J-C, Chazette P, Formenti P, Pelon J (2010) Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa. Atmos Chem Phys 10:8131–8150. doi:10.5194/acp-10-8131-2010 CrossRefGoogle Scholar
  28. Liou KN (2002) An introduction to atmospheric radiation. Elsevier, New York, p 583Google Scholar
  29. Middleton NJ (1986) A geography of dust storms in southwest Asia. J Clim 6:183–196CrossRefGoogle Scholar
  30. Monkkonen P, Uma R, Srinivasan D, Koponen IK, Lehtinen KEJ, Hameri K, Suresh R, Sharma VP, Kulmala M (2004) Relationship and variations of aerosol number and PM10 mass concentrations in a highly polluted urban environment –New Delhi, India. Atmos Environ 38:425–433CrossRefGoogle Scholar
  31. Moorthy KK, Babu SS, Satheesh SK (2005) Aerosol characteristics and radiative impacts over the Arabian Sea during the inter-monsoon season: results from ARMEX Field campaign. J Atmos Sci 62:192–206CrossRefGoogle Scholar
  32. Morys M, Mims FM III, Hagerup S, Anderson SE, Baker A, Kia J, Walkup T (2001) Design, calibration, and performance of Microtops II handheld ozone monitor and sun photometer. J Geophys Res 106:14573–14582CrossRefGoogle Scholar
  33. Pandithurai G, Dipu S, Dani KK, Tiwari S, Bisht DS, Devara PCS, Pinker RT (2008) Aerosol radiative forcing during dust events over New Delhi, India. J Geophys Res 113:D13209. doi:10.1029/2008JD009804 CrossRefGoogle Scholar
  34. Pandithurai G, Pinker RT, Takamura T, Devara PCS (2004) Aerosol radiative forcing over a tropical urban site in India. Geophys Res Lett 31:L12107. doi:10.1029/2004GL019702 CrossRefGoogle Scholar
  35. Pant P, Hegde P, Dumka UC, Sagar R, Satheesh SK, Moorthy KK, Saha A, Srivastava MK (2006) Aerosol characteristics at a high-altitude location in central Himalayas: optical properties and radiative forcing. J Geophys Res 111:D17206. doi:10.1029/2005JD006768 CrossRefGoogle Scholar
  36. Pilewskie P (2007) Climate change: aerosols heat up. Nature 448:541–542. doi:10.1038/448541a CrossRefGoogle Scholar
  37. Prasad AK, Singh RP (2007) Changes in aerosol parameters during major dust storm events (2001–2005) over the Indo-Gangetic Plains using AERONET and MODIS data. J Geophys Res 112:D09208. doi:10.1029/2006JD007778 CrossRefGoogle Scholar
  38. Ramachandran S, Rengarajan R, Jayaraman A, Sarin MM, Das SK (2006) Aerosol radiative forcing during clear, hazy, and foggy conditions over a continental polluted location in north India. J Geophys Res 111:D20214. doi:10.1029/2006JD007142
  39. Ramanathan V, Ramana MV (2005) Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Ganges plains. Pure Appl Geophys 162:1609–1626CrossRefGoogle Scholar
  40. Ramanathan V, Ramana MV, Roberts G, Kim D, Corrigan C, Chung C, Winker D (2007) Warming trends in Asia amplified by brown cloud solar absorption. Nature 448:575–578CrossRefGoogle Scholar
  41. Reddy MS, Venketaraman C (2002a) Inventories of aerosols and sulphur dioxide emissions from India: I. Fossil fuel combustion. Atmos Environ 36:677–697CrossRefGoogle Scholar
  42. Reddy MS, Venketaraman C (2002b) Inventories of aerosols and sulphur dioxide emissions from India: II. Biomass combustion. Atmos Environ 36:699–712CrossRefGoogle Scholar
  43. Rengarajan R, Sarin MM, Sudheer AK (2007) Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J Geophys Res 112:D21307. doi:10.1029/2006JD008150 CrossRefGoogle Scholar
  44. Ricchiazzi P, Yang S, Gautier C, Sowle D (1998) SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere. Bull Am Meteorol Soc 79:2101–2114CrossRefGoogle Scholar
  45. Russell PB et al (2002) Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments. J Atmos Sci 59:609–619CrossRefGoogle Scholar
  46. Russell PB et al (2010) Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmos Chem Phys 10:1155–1169CrossRefGoogle Scholar
  47. Sarkar S, Chokngamwong R, Cervone G, Singh RP, Kafatos M (2006) Variability of aerosol optical depth and aerosol forcing over India. Adv Space Res 37(12):2153–2159. doi:10.1016/j.asr.2005.09.043 CrossRefGoogle Scholar
  48. Satheesh SK, Moorthy KK (2005) Radiative effects of natural aerosols: a review. Atmos Env 39:2089–2110CrossRefGoogle Scholar
  49. Satheesh SK, Ramanathan V (2000) Large differences in tropical aerosol forcing at the top of the atmosphere and Earth's surface. Nature 405:60–63CrossRefGoogle Scholar
  50. Satheesh SK, Srinivasan J (2006) A method to estimate aerosol radiative forcing from spectral optical depths. J Atmos Sci 63(3):1082–1092CrossRefGoogle Scholar
  51. Singh S, Nath S, Kohli R, Singh R (2005) Aerosols over Delhi during pre-monsoon months: characteristics and effects on surface radiation forcing. Geophys Res Lett 32:L13808. doi:10.1029/2005GL023062 CrossRefGoogle Scholar
  52. Singh S, Soni K, Bano T, Tanwar RS, Nath S, Arya BC (2010) Clear-sky direct aerosol radiative forcing variations over mega-city Delhi. Ann Geophys 28:1157–1166CrossRefGoogle Scholar
  53. Soni K, Singh S, Bano T, Tanwar RS, Nath S, Arya BC (2010) Variations in single scattering albedo and Angstrom absorption exponent during different seasons at Delhi, India. Atmos Env 44:4355–4363CrossRefGoogle Scholar
  54. Srivastava AK, Devara PCS, Rao YJ, Bhavanikumar Y, Rao DN (2008) Aerosol optical depth, ozone and water vapor measurements over Gadanki, a tropical station in peninsular India. Aerosol Air Qual Res 8(4):459–476Google Scholar
  55. Srivastava AK, Tiwari S, Bisht DS, Devara PCS, Goloub P, Li Z, Srivastava MK (2010) Aerosol characteristics during the coolest June month over New Delhi, northern India. Int J Remote Sens (in press)Google Scholar
  56. Srivastava AK, Tiwari S, Devara PCS, Bisht DS, Srivastava MK, Tripathi SN, Goloub P, Holben BN (2011) Pre-monsoon aerosol characteristics over the Indo-Gangetic Basin: implications to climatic impact. Ann Geophys 29:789–804CrossRefGoogle Scholar
  57. Srivastava MK, Singh S, Saha A, Dumka UC, Hegde P, Singh R, Pant P (2006) Direct solar ultraviolet irradiance over Nainital, India, in the central Himalayas for clear-sky day conditions during December 2004. J Geophys Res 111:D08201. doi:10.1029/2005JD006141 CrossRefGoogle Scholar
  58. Streets et al (2009) Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006. J Geophys Res 114:D00D18. doi:10.1029/2008JD011624 CrossRefGoogle Scholar
  59. Stull RB (1999) An introduction to boundary layer meteorology. Springer, New York, p 620Google Scholar
  60. Tare et al (2006) Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Program Land Campaign II at a typical location in the Ganga Basin: 2. Chemical properties. J Geophys Res 111:D23210. doi:10.1029/2006JD007279 CrossRefGoogle Scholar
  61. Tiwari S, Srivastava AK, Bisht DS, Bano T, Singh S, Behura S, Srivastava MK, Chate DM, Padmanabhamurty B (2009) Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. J Atmos Chem 62:193–209. doi: 10.1007/s10874-010-9148-z Google Scholar
  62. Tripathi SN, Dey S, Chandel A, Srivastava S, Singh RP, Holben BN (2005) Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India. Ann Geophys 23:1093–1101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Atul K. Srivastava
    • 1
  • Sachchidanand Singh
    • 2
  • S. Tiwari
    • 1
  • D. S. Bisht
    • 1
  1. 1.Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij MargNew DelhiIndia
  2. 2.CSIR, National Physical Laboratory, Dr. K. S. Krishnan MargNew DelhiIndia

Personalised recommendations