Environmental Science and Pollution Research

, Volume 19, Issue 2, pp 585–591 | Cite as

Triclosan—the forgotten priority substance?

  • Peter Carsten von der OheEmail author
  • Mechthild Schmitt-Jansen
  • Jaroslav Slobodnik
  • Werner Brack
Research Communication



Triclosan (TCS) is a multi-purpose biocide. Its wide use in personal care products (PCPs) fosters its dispersal in the aquatic environment. Despite enhanced awareness of both scientists and the public in the last decade with regard to fate and effects, TCS received little attention regarding its prioritisation as a candidate river basin-specific pollutant or even priority substance, due to scarce monitoring data.


Applying a new prioritisation methodology, the potential risk of TCS was assessed based on a refined hazard assessment and occurrences at 802 monitoring sites in the Elbe River basin.


The suggested acute-based predicted no-effect concentration (PNEC) of 4.7 ng/l for the standard test species Selenastrum capricornutum was in good agreement with effect concentrations in algal communities and was exceeded in the Elbe River basin at 75% of the sites (limit of quantification of 5 ng/l). The 95th percentile of the maximum environmental concentrations at each site exceeded the PNEC by a factor of 12, indicating potential hazards for algal communities. Among 500 potential river basin-specific pollutants which were recently prioritised, triclosan ranks on position 6 of the most problematic substances, based on the Elbe River data alone.


Considering the worldwide application of PCPs containing triclosan, we expect that the TCS problem is not restricted to the Elbe River basin, even if monitoring data from other river basins are scarce. Thus, we suggest to include TCS into routine monitoring programmes and to consider it as an important candidate for prioritisation at the European scale.


Triclosan Prioritisation Priority substance River basin-specific pollutant Biocide 



The presented prioritisation approach was developed within the NORMAN Association (no. W604002510). The work was supported by the European Commission through the Integrated Project MODELKEY (contract no. 511237GOCE). Peter C. von der Ohe was financially supported through a Deutsche Forschungsgemeinschaft (DFG) postdoctoral fellowship (PAK 406/1). We would like to acknowledge the Sächsisches Landesamt für Umwelt und Geologie (LfUG, Dresden, Germany), who kindly provided the monitoring data. Tobias Schulze is thanked for valuable suggestions on an earlier version of the manuscript. José-Manuel Zaldívar Comenges and Stefania Gottardo provided valuable information on the European prioritisation process.

Supplementary material

11356_2011_580_MOESM1_ESM.doc (1.1 mb)
Table S1 Overview of sampling sites with analysis of triclosan, the water body it represents, the years with analysis, the number of samples (n), the maximum concentration (max), the average concentration (average) and the detection frequency (DOC 1,089 kb)


  1. Adolfsson-Erici M, Pettersson M, Parkkonen J, Sturve J (2002) Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 46:1485–1489CrossRefGoogle Scholar
  2. Allmyr M, Adolfsson-Erici M, McLachlan MS, Sandborgh-Englund G (2006) Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci Total Environ 372:87–93CrossRefGoogle Scholar
  3. Bandow N, Altenburger R, Streck G, Brack W (2009) Effect-directed analysis of contaminated sediments with partition-based dosing using green algae cell multiplication inhibition. Environ Sci Technol 43:7343–7349CrossRefGoogle Scholar
  4. Bester K (2003) Triclosan in a sewage treatment process—balances and monitoring data. Water Res 37:3891–3896CrossRefGoogle Scholar
  5. Bester K (2005) Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Arch Environ Contam Toxicol 49:9–17CrossRefGoogle Scholar
  6. BfR (2009) BfR unterstützt Verwendungsverbot von triclosan in Lebensmittelbedarfsgenständen Bundesinstitut für Risikobewertung Berlin, pp Stellungname 031/2009Google Scholar
  7. Bhargava HN, Leonard PA (1996) Triclosan: applications and safety. Am J Infect Control 24:209–218CrossRefGoogle Scholar
  8. Bock M, Lyndall J, Barber T, Fuchsman P, Perruchon E, Capdevielle M (2010) Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment. Integr Environ Assess Manag 6:393–404Google Scholar
  9. Braoudaki M, Hilton AC (2004) Low level of cross-resistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E. coli O157. FEMS Microbiol Lett 235:305–309CrossRefGoogle Scholar
  10. Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532CrossRefGoogle Scholar
  11. Buth JM, Steen PO, Sueper C, Blumentritt D, Vikesland PJ, Arnold WA, McNeill K (2010) Dioxin photoproducts of triclosan and its chlorinated derivatives in sediment cores. Environ Sci Technol 44:4545–4551CrossRefGoogle Scholar
  12. Capdevielle M, Van Egmond R, Whelan M, Versteeg D, Hofmann-Kamensky M, Inauen J, Cunningham V, Woltering D (2008) Consideration of exposure and species sensitivity of triclosan in the freshwater environment. Integr Environ Assess Manag 4:15–23CrossRefGoogle Scholar
  13. Chalew TE, Halden RU (2009) Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban. J Am Water Works Assoc 45:4–13CrossRefGoogle Scholar
  14. Ciba SC (2001) General information on chemical, physical and microbial properties of Irgasan DP300, Irgacare MP and Irgacide LP10, BaselGoogle Scholar
  15. Commission E (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Commission of the European Communities. Official Journal of the European Communities L327Google Scholar
  16. Commission E (2003) Technical guidance document (TGD) in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No. 1488/94 on risk assessment for existing substances and Directive 98/8/EC of the 44 European Parliament and the Council concerning the placing of biocidal products on the market, Joint Research Centre, Ispra, ItalyGoogle Scholar
  17. Commission E (2008) Directive 2008/105/EC of the European Parliament and of the council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. L 348/84Google Scholar
  18. Coogan MA, Edziyie RE, La Point TW, Venables BJ (2007) Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater, treatment plant receiving stream. Chemosphere 67:1911–1918CrossRefGoogle Scholar
  19. Daginnus K, Gottardo S, Paya-Perez A, Whitehouse P, Wilkinson H, Zaldivar JM (2011) A model-based prioritisation exercise for the European Water Framework Directive. Int J Environ Res Public Health 8:435–455CrossRefGoogle Scholar
  20. Dayan AD (2007) Risk assessment of triclosan [Irgasan] in human breast milk. Food Chem Toxicol 45:125–129CrossRefGoogle Scholar
  21. Franz S, Altenburger R, Heilmeier H, Schmitt-Jansen M (2008) What contributes to the sensitivity of microalgae to triclosan? Aquat Toxicol 90:102–108CrossRefGoogle Scholar
  22. Fuchsman P, Lyndall J, Bock M, Lauren D, Barber T, Leigh K, Perruchon E, Capdevielle M (2010) Terrestrial ecological risk evaluations for triclosan in land-applied biosolids. Integr Environ Assess Manag 6:405–418CrossRefGoogle Scholar
  23. Halden RU, Paull DH (2005) Co-occurrence of triclocarban and triclosan in U.S. water resources. Environ Sci Technol 39:1420–1426CrossRefGoogle Scholar
  24. Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO (1999) Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274:11110–11114CrossRefGoogle Scholar
  25. Ishibashi H, Matsumura N, Hirano M, Matsuoka M, Shiratsuchi H, Ishibashi Y, Takao Y, Arizono K (2004) Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat Toxicol 67:167–179CrossRefGoogle Scholar
  26. James A, Bonnomet V, Morin A, Fribourg-Blanc B (2009) Implementation of requirements on priority substances within the context of the Water Framework Directive. Prioritization process: monitoring-based ranking, Verneuil-en-Halatte, France, pp. 58Google Scholar
  27. Klein W, Denzer S, Herrchen M, Lepper P, Müller M, Sehrt R, Storm A, Volmer J (1999) Revised proposal for a list of priority substances in the context of the water framework directive (COMMPS Procedure). Frauenhofer-Institut, Umweltchemie und Ökotoxikologie, SchmallenbergGoogle Scholar
  28. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  29. Kookana RS, Ying GG, Waller NJ (2011) Triclosan: its occurrence, fate and effects in the Australian environment. Water Sci Technol 63:598–604CrossRefGoogle Scholar
  30. Krautter M (2004) Triclosan—gefährlicher Bakterienkiller in Gebrauchsartikeln. Greenpeace e. V, HamburgGoogle Scholar
  31. Lindstrom A, Buerge IJ, Poiger T, Bergqvist PA, Muller MD, Buser HR (2002) Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ Sci Technol 36:2322–2329CrossRefGoogle Scholar
  32. Lyndall J, Fuchsman P, Bock M, Barber T, Lauren D, Leigh K, Perruchon E, Capdevielle M (2010) Probabilistic risk evaluation for triclosan in surface water, sediments, and aquatic biota tissues. Integr Environ Assess Manag 6:419–440CrossRefGoogle Scholar
  33. McAvoy DC, Schatowitz B, Jacob M, Hauk A, Eckhoff WS (2002) Measurement of triclosan in wastewater treatment systems. Environ Toxicol Chem 21:1323–1329CrossRefGoogle Scholar
  34. McMurry LM, Oethinger M, Levy SB (1998) Triclosan targets lipid synthesis. Nature 394:531–532CrossRefGoogle Scholar
  35. OECD (2004) The 2004 OECD list of high production volume chemicals. Organisation for Economic Co-Operation and Development, ParisGoogle Scholar
  36. Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V (2002) Aquatic toxicity of triclosan. Environ Toxicol Chem 21:1338–1349CrossRefGoogle Scholar
  37. Paxeus N (1996) Organic pollutants in the effluents of large wastewater treatment plants in Sweden. Water Res 30:1115–1122CrossRefGoogle Scholar
  38. Ricart M, Guasch H, Alberch M, Barcelo D, Bonnineau C, Geiszinger A, Farre M, Ferrer J, Ricciardi F, Romani AM, Morin S, Proia L, Sala L, Sureda D, Sabater S (2010) Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquat Toxicol 100:346–353CrossRefGoogle Scholar
  39. Sabaliunas D, Webb SF, Hauk A, Jacob M, Eckhoff WS (2003) Environmental fate of triclosan in the River Aire Basin, UK. Water Res 37:3145–3154CrossRefGoogle Scholar
  40. Singer H, Muller S, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36:4998–5004CrossRefGoogle Scholar
  41. Tatarazako N, Ishibashi H, Teshima K, Kishi K, Arizono K (2004) Effects of triclosan on various aquatic organisms. Environ Sci 11:133–140Google Scholar
  42. Tixier C, Singer HP, Canonica S, Muller SR (2002) Phototransformation of triclosan in surface waters: a relevant elimination process for this widely used biocide—laboratory studies, field measurements, and modeling. Environ Sci Technol 36:3482–3489CrossRefGoogle Scholar
  43. USEPA (2003) Toxic control act chemical substance inventory: factsheet triclosan. USEPA, Boston. Accessed date 12/05/2008Google Scholar
  44. Villalain J, Mateo CR, Aranda FJ, Shapiro S, Micol V (2001) Membranotropic effects of the antibacterial agent Triclosan. Arch Biochem Biophys 390:128–136CrossRefGoogle Scholar
  45. von der Ohe PC, de Deckere E, Prüß A, Munoz I, Wolfram G, Villagrasa M, Ginebreda A, Hein M, Brack W (2009) Towards an integrated assessment of the ecological and chemical status of European River basins. Integr Environ Assess Manag 5:50–61CrossRefGoogle Scholar
  46. von der Ohe PC, Dulio V, Slobodnik J, De Deckere E, Kühne R, Ebert R-U, Ginebreda A, De Cooman W, Schüürmann G, Brack W (2011) A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive. Sci Total Environ 409:2064–2077CrossRefGoogle Scholar
  47. Wilson BA, Smith VH, De Noyelles F Jr, Larive CK (2003) Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. Environ Sci Technol 37:1713–1719CrossRefGoogle Scholar
  48. Young TA, Heidler J, Matos-Perez CR, Sapkota A, Toler T, Gibson KE, Schwab KJ, Halden RU (2008) Ab initio and in situ comparison of caffeine, triclosan, and triclocarban as indicators of sewage-derived microbes in surface waters. Environ Sci Technol 42:3335–3340CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Peter Carsten von der Ohe
    • 1
    Email author
  • Mechthild Schmitt-Jansen
    • 2
  • Jaroslav Slobodnik
    • 3
  • Werner Brack
    • 1
  1. 1.Department of Effect-Directed AnalysisHelmholtz Centre for Environmental Research–UFZLeipzigGermany
  2. 2.Department Bioanalytical EcotoxicologyHelmholtz Centre for Environmental Research–UFZLeipzigGermany
  3. 3.Environmental InstituteKoŝSlovak Republic

Personalised recommendations