Anomalous low tropospheric column ozone over Eastern India during the severe drought event of monsoon 2002: a case study

  • Sachin D. Ghude
  • Santosh H. Kulkarni
  • Pavan S. Kulkarni
  • Vijay P. Kanawade
  • Suvarna Fadnavis
  • Samir Pokhrel
  • Chinmay Jena
  • G. Beig
  • D. Bortoli
Research Article

Abstract

Background, aim, and scope

The present study is an attempt to examine some of the probable causes of the unusually low tropospheric column ozone observed over eastern India during the exceptional drought event in July 2002.

Method

We examined horizontal wind and omega (vertical velocity) anomalies over the Indian region to understand the large-scale dynamical processes which prevailed in July 2002. We also examined anomalies in tropospheric carbon monoxide (CO), an important ozone precursor, and observed low CO mixing ratio in the free troposphere in 2002 over eastern India.

Results and discussion

It was found that instead of a normal large-scale ascent, the air was descending in the middle and lower troposphere over a vast part of India. This configuration was apparently responsible for the less convective upwelling of precursors and likely caused less photochemical ozone formation in the free troposphere over eastern India in July 2002.

Conclusion

The insight gained from this case study will hopefully provide a better understanding of the process controlling the distribution of the tropospheric ozone over the Indian region.

Keywords

Tropospheric ozone Convection South Asia Pollution 

Notes

Acknowledgment

The authors are thankful to Prof. B.N. Goswami, Director, IITM, for encouragement during the progress of the work. MOPITT CO data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. One of the authors (PSK) is financed through the “SPATRAM-MIGE Polar Project,” funded by the Portuguese Science Foundation—FCT. We thank to National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP-NCAR) reanalysis (http://www.cdc.noaa.gov/) for providing wind reanalysis data. The TRMM 3b42 data products used in this study were acquired using the GES-DISC Interactive Online Visualization and analysis Infrastructure (Giovanni) as part of the NASA's Goddard Earth Sciences (GES) Data and Information Services Center (DISC). We acknowledge the atmospheric science data center, NASA, for providing TES data and we are grateful to NASA (Moderate Resolution Imaging Spectroradiometer, http://modis.gsfc.nasa.gov/) for supplying MODIS water vapor products.

References

  1. Ancellet G, Leclair de Bellevue J, Mari C, Nedelec P, Kukui A, Borbon A, Perros P (2009) Effects of regional-scale and convective transports on tropospheric ozone chemistry revealed by aircraft observations during the wet season of the AMMA campaign. Atmos Chem Phys 9:383–411CrossRefGoogle Scholar
  2. Antón M, Koukouli ME, Kroon M, McPeters RD, Labow GJ, Balis D, Serrano A (2010) Global validation of empirically corrected EP-total ozone mapping spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements. J Geophys Res 115:D19305. doi: 10.1029/2010JD014178 CrossRefGoogle Scholar
  3. Berntsen TK, Isaksen IA (1999) Effects of lightning and convection on changes in tropospheric ozone due to NOx emissions from aircraft. Tellus Ser B 51(4):766–788CrossRefGoogle Scholar
  4. Chandra S, Ziemke JR, Schoeber MR, Froidevaux L, Read WG, Levelt PF, Bhartia PK (2007) Effects of the 2004 El Niño on tropospheric ozone and water vapor. Geophys Res Lett 34:L06802. doi: 10.1029/2006GL028779 CrossRefGoogle Scholar
  5. Chatfield RB, Delany AC (1990) Convection links biomass burning to increased tropical ozone: however, models will tend to over-predict O3. J Geophys Res 95:18473–18488CrossRefGoogle Scholar
  6. Creilson JK, Fishman J, Wozniak AE (2003) Intercontinental transport of tropospheric ozone: a study of its seasonal variability across the North Atlantic utilizing tropospheric ozone residuals and its relationship to the North Atlantic oscillation. Atmos Chem Phys 3:2053–2066CrossRefGoogle Scholar
  7. Deeter MN et al (2003) Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument. J Geophys Res 108(D14):4399. doi: 10.1029/2002JD003186 CrossRefGoogle Scholar
  8. Deeter MN, Edwards DP, Gille JC, Drummond JR (2009) CO retrievals based on MOPITT near-infrared observations. J Geophys Res 114:D04303. doi: 10.1029/2008JD010872 CrossRefGoogle Scholar
  9. Deeter MN, Edwards DP, Gille JC, Emmons LK, Francis G, Ho SP, Mao D, Masters D, Worden H, Drummond JR, Novelli PC (2010) The MOPITT version 4 CO product: algorithm enhancements, validation and long-term stability. J Geophys Res 115:D07036. doi: 10.1029/2009JD013005 CrossRefGoogle Scholar
  10. Doherty RM, Stevenson DS, Johnson CE, Collins WJ, Sanderson MG (2006) Tropospheric ozone and El Niño–Southern oscillation: influence of atmospheric dynamics, biomass burning emissions, and future climate change. J Geophys Res 111:D19304. doi: 10.1029/2005JD006849 CrossRefGoogle Scholar
  11. Drummond JR, Zou J, Nichitiu F, Kar J, Deschambaut R, Hackett J (2010) A review of 9-year performance and operation of the MOPITT instrument. Adv Space Res 45:760–774. doi: 10.1016/j.asr.2009.11.019,2010 CrossRefGoogle Scholar
  12. Edwards DP et al (2003) Tropospheric ozone over the tropical Atlantic: a satellite perspective. J Geophys Res 108(D8):4237. doi: 10.1029/2002JD002927 CrossRefGoogle Scholar
  13. Eremenko M, Dufour G, Foret G, Keim C, Orphal J, Beekmann M, Bergametti G, Flaud JM (2008) Tropospheric ozone distributions over Europe during the heat wave in July 2007 observed from infrared nadir spectra recorded by IASI. Geophys Res Lett 35:L18805. doi: 10.1029/2008GL034803 CrossRefGoogle Scholar
  14. Fishman J, Balok AE (1999) Calculation of daily tropospheric ozone residuals using TOMS and empirically improved SBUV measurements: application to an ozone pollution episode over the eastern United States. J Geophys Res 104:30319–30340CrossRefGoogle Scholar
  15. Fishman J, Solomon S, Crutzen PJ (1979) Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone. Tellus 31:432–446CrossRefGoogle Scholar
  16. Fishman J, Watson CE, Larsen JC, Logan JA (1990) Distribution of tropospheric ozone determined from satellite data. J Geophys Res 95:3599–3617CrossRefGoogle Scholar
  17. Fishman J, Brackett VG, Browell EV, Grant WB (1996) Tropospheric ozone derived from TOMS/SBUV measurements during TRACE-A. J Geophys Res 101(D19):24069–24082CrossRefGoogle Scholar
  18. Fishman J, Wozniak AE, Creilson JK (2003) Global distribution of tropospheric ozone from satellite measurements using the empirically corrected tropospheric ozone residual technique: identification of the regional aspects of air pollution. Atmos Chem Phys 3:893–907. doi: 10.5194/acp-3-893-2003 CrossRefGoogle Scholar
  19. Gadgil S, Vinayachandran PN, Francis PA (2003) Droughts of the Indian summer monsoon: role of clouds over the Indian Ocean. Curr Sci 85(12):1713–1719Google Scholar
  20. Ghude SD, Fadnavis S, Beig G, Polade SD, van der A RJ (2008) Detection of surface emission hot spots, trends, and seasonal cycle from satellite-retrieved NO2 over India. J Geophys Res 113:D20305. doi: 10.1029/2007JD009615 CrossRefGoogle Scholar
  21. Ghude SD, van der A RJ, Beig G, Fadnavis S, Polade SD (2009) Satellite derived trends in NO2 over the major global hotspot regions during the past decade and their inter-comparison. Environ Pollut 157(6):1879–1885CrossRefGoogle Scholar
  22. Ghude SD, Kulkarni Pavan S, Beig G, Jain SL, Arya BC (2010) Global distribution of tropospheric ozone and its precursors: a view from the space. Int J Remote Sens 31(2):485–495CrossRefGoogle Scholar
  23. Hudson RD, Kim JH, Thompson AM (1995) On the derivation of tropospheric column from radiances measured by the total ozone mapping spectrometer. J Geophys Res 100:11137–11145CrossRefGoogle Scholar
  24. Kar J et al (2004) Evidence of vertical transport of carbon monoxide from measurements of pollution in the troposphere (MOPITT). Geophys Res Lett 31:L23105. doi: 10.1029/2004GL021128 CrossRefGoogle Scholar
  25. Kar J et al (2008) Measurement of low-altitude CO over the Indian subcontinent by MOPITT. J Geophys Res 113:D16307. doi: 10.1029/2007JD009362 CrossRefGoogle Scholar
  26. Kar J, Fishman J, Creilson JK, Richter A, Ziemke J, Chandra S (2010) Are there urban signatures in the tropospheric ozone column products derived from satellite measurements? Atmos Chem Phys 10:5213–5222. doi: 10.5194/acp-10-5213-2010 CrossRefGoogle Scholar
  27. Kim JH, Newchurch MJ, Han K (2001) Distribution of tropical tropospheric ozone determined by the scan-angle method applied to TOMS measurement. J Atmos Sci 58:2699–2708CrossRefGoogle Scholar
  28. Klenk KF, Bhartia PK, Fleig AJ, Kaveeshwar VG, McPeters RD, Smith PM (1982) Total ozone determination from the Backscatter UV Experiment (BUV). J Appl Meteorol 21:1672–1684CrossRefGoogle Scholar
  29. Kley D et al (1996) Observations of near-zero ozone concentrations over the convective Pacific: effects on air chemistry. Science 274:230–232CrossRefGoogle Scholar
  30. Lawrence MG, Lelieveld J (2010) Atmospheric pollutant outflow from southern Asia: a review. Atmos Chem Phys Discuss 10:9463–9646CrossRefGoogle Scholar
  31. Martin RV et al (2002a) Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in situ observations. J Geophys Res 107(D18):4351. doi: 10.1029/2001JD001480 CrossRefGoogle Scholar
  32. McPeters R, Taylor S, Jaross G et al. (2007) Empirically corrected TOMS earth probe dataset. http://jwocky.gsfc.nasa.gov/news/Corrected_EP_TOMS_README.pdf
  33. Park M, Randel WJ, Gettelman A, Massie ST, Jiang JH (2007) Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J Geophys Res 112:D16309. doi: 10.1029/2006JD008294 CrossRefGoogle Scholar
  34. Park M, Randel WJ, Emmons LK, Livesey NJ (2009) Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART). J Geophys Res 114:D08303. doi: 10.1029/2008JD010621 CrossRefGoogle Scholar
  35. Patra PK, Behera SK, Herman JR, Maksyutov S, Akimoto H, Yamagata T (2005) The Indian summer monsoon rainfall: interplay of coupled dynamics, radiation and cloud microphysics. Atmos Chem Phys 5:2181–2188CrossRefGoogle Scholar
  36. Randel WJ et al (2010) Asian monsoon transport of pollution to the stratosphere. Science 328(5978):611–613. doi: 10.1126/science.1182274 CrossRefGoogle Scholar
  37. Sikka DR (2003) Evaluation of monitoring and forecasting a summer monsoon over India and a review of monsoon drought of 2002. Proc Indian Natl Sci Acad Earth Planet Sci 69:479–504Google Scholar
  38. Shim C, Li Q, Luo M, Kulawik S, Worden H, Worden J, Eldering A, Diskin G, Sachse G, Weinheimer A, Knapp D, Montzca D, Campos T (2009) Satellite observations of Mexico City pollution outflow from the tropospheric emissions spectrometer (TES). Atmos Environ 43:1540–1547CrossRefGoogle Scholar
  39. Srivastava AK, Guhathakurta P, Rajeevan M, Dikshit SK, Kshirsagar SR (2007) Did unusual warming over the mid and higher latitudes play some role in causing the unprecedented failure of the southwest monsoon during July 2002? Meteorol Atmos Phys 96(3–4):193–201CrossRefGoogle Scholar
  40. Thompson AM, Tao WK, Pickering KE, Scala JR, Simpson J (1997) Tropical deep convection and ozone formation. Bull Am Meteorol Soc 78(6):1043–1054CrossRefGoogle Scholar
  41. Thompson AM, Witte JC, Hudson RD, Guo H, Herman JR, Fujiwara M (2001) Tropical tropospheric ozone and biomass burning. Science 291:2128–2132CrossRefGoogle Scholar
  42. Thompson AM et al (2003) Southern hemisphere additional ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology: 1. Comparison with total ozone mapping spectrometer (TOMS) and ground-based measurements. J Geophys Res 108(D2):8238. doi: 10.1029/2001JD000967 CrossRefGoogle Scholar
  43. Tian W, Chipperfield M, Huang Q (2008) Effects of the Tibetean Plateau on total column ozone distribution. Tellus Ser B 60:622–235CrossRefGoogle Scholar
  44. Ziemke JR et al (2006) Tropospheric ozone determined from Aura OMI and MLS: evaluation of measurements and comparison with the global modeling initiative’s chemical transport model. J Geophys Res 111:D19303. doi: 10.1029/2006JD007089 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sachin D. Ghude
    • 1
  • Santosh H. Kulkarni
    • 1
  • Pavan S. Kulkarni
    • 2
  • Vijay P. Kanawade
    • 3
  • Suvarna Fadnavis
    • 1
  • Samir Pokhrel
    • 1
  • Chinmay Jena
    • 1
  • G. Beig
    • 1
  • D. Bortoli
    • 2
  1. 1.Indian Institute of Tropical MeteorologyPuneIndia
  2. 2.Geophysics Centre of Evora (CGE)University of ÉvoraÉvoraPortugal
  3. 3.Department of Chemistry and BiochemistryKent State UniversityKentUSA

Personalised recommendations