Environmental Science and Pollution Research

, Volume 18, Issue 7, pp 1202–1212 | Cite as

Temporal variations of atmospheric aerosol in four European urban areas

  • Maria Lianou
  • Marie-Cecile Chalbot
  • Ilias G. Kavouras
  • Anastasia Kotronarou
  • Anna Karakatsani
  • Antonis Analytis
  • Klea Katsouyanni
  • Arto Puustinen
  • Kaarle Hameri
  • Marko Vallius
  • Juha Pekkanen
  • Claire Meddings
  • Roy M. Harrison
  • Jon G. Ayres
  • Harry ten Brick
  • Gerard Kos
  • Kees Meliefste
  • Jeroen de Hartog
  • Gerard Hoek
Research Article

Abstract

Purpose

The concentrations of PM10 mass, PM2.5 mass and particle number were continuously measured for 18 months in urban background locations across Europe to determine the spatial and temporal variability of particulate matter.

Methods

Daily PM10 and PM2.5 samples were continuously collected from October 2002 to April 2004 in background areas in Helsinki, Athens, Amsterdam and Birmingham. Particle mass was determined using analytical microbalances with precision of 1 μg. Pre- and post-reflectance measurements were taken using smoke-stain reflectometers. One-minute measurements of particle number were obtained using condensation particle counters.

Results

The 18-month mean PM10 and PM2.5 mass concentrations ranged from 15.4 μg/m3 in Helsinki to 56.7 μg/m3 in Athens and from 9.0 μg/m3 in Helsinki to 25.0 μg/m3 in Athens, respectively. Particle number concentrations ranged from 10,091 part/cm3 in Helsinki to 24,180 part/cm3 in Athens with highest levels being measured in winter. Fine particles accounted for more than 60% of PM10 with the exception of Athens where PM2.5 comprised 43% of PM10. Higher PM mass and number concentrations were measured in winter as compared to summer in all urban areas at a significance level p < 0.05.

Conclusions

Significant quantitative and qualitative differences for particle mass across the four urban areas in Europe were observed. These were due to strong local and regional characteristics of particulate pollution sources which contribute to the heterogeneity of health responses. In addition, these findings also bear on the ability of different countries to comply with existing directives and the effectiveness of mitigation policies.

Keywords

Particulate matter Ultrafine Coarse particles Absorbance Urban Road dust Traffic 

References

  1. Alam A, Shi JP, Harrison RM (2003) Observation of new particle formation in urban air. J Geophys Res 108:4093–4107CrossRefGoogle Scholar
  2. Bigi A, Harrison RM (2010) Analysis of the air pollution climate at a central urban background site. Atmos Environ 44:2004–2012CrossRefGoogle Scholar
  3. Brook JR, Dann TF, Bonvalot Y (1999) Observations and interpretations from the Canadian fine particle monitoring program. J Air Waste Manage Assoc 49:35–44Google Scholar
  4. Brown JS, Zeman KL, Bennett WD (2002) Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med 166:1240–1247CrossRefGoogle Scholar
  5. Brunekreef B, Forsberg B (2005) Epidemiological evidence of effects of coarse airborne particles on health. Eur Respir J 26:309–318CrossRefGoogle Scholar
  6. Cyrys J, Heinrich J, Hoek G et al (2003) Comparison between different traffic-related particle indicators: elemental carbon (EC), PM2.5 mass, and absorbance. J Exp Anal Environ Epidem 13:134–143CrossRefGoogle Scholar
  7. de Hartog J, Ayres JG, Karakatsani A et al (2010) Indoor and outdoor fine and ultrafine particles in relation to lung function in asthma/COPD patients in four European cities. Occ Env Med 67:2–10CrossRefGoogle Scholar
  8. Dye JA, Lehmann JR, McGee JK et al (2001) Acute pulmonary toxicity of particulate matter filter extracts in rats: coherence with epidemiologic studies in Utah Valley residents. Environ Health Perspec 109:395–403CrossRefGoogle Scholar
  9. Engelstaedter S, Tegen I, Washington R (2006) North African dust emissions and transport. Earth Sci Rev 79:73–100CrossRefGoogle Scholar
  10. Etyemezian V, Kuhns H, Gillies J et al (2003) Vehicle-based road dust emission measurement (III): effect of speed, traffic volume, location, and season on PM10 road dust emissions in the Treasure Valley, ID. Atmos Environ 37:4583–4593CrossRefGoogle Scholar
  11. Gehrig R, Hill M, Buchmann B et al (2004) Separate determination of PM10 emission factors of road traffic for tailpipe emissions and emissions from abrasion and resuspension processes. Int J Environ Pollut 22:312–325Google Scholar
  12. Gomiscek B, Frank A, Puxbaum H et al (2004) Case study analysis of PM burden at an urban and a rural site during the AUPHEP project. Atmos Environ 38:3935–3948CrossRefGoogle Scholar
  13. Harrison RM, Jones M, Collins G (1999) Measurements of the physical properties of particles in the urban atmosphere. Atmos Environ 33:309–321CrossRefGoogle Scholar
  14. Harrison RM, Yin J, Mark D et al (2001) Studies of the coarse particle (2.5–10 μm) component in UK urban atmospheres. Atmos Environ 35:3667–3679CrossRefGoogle Scholar
  15. Harrison RM, Jones AM (2005) Multisite study of particle number concentrations in urban air. Environ Sci Technol 39:6063–6070CrossRefGoogle Scholar
  16. Hueglin C, Gehrig R, Baltensperger U et al (2005) Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos Environ 39:637–651CrossRefGoogle Scholar
  17. Johansson C (2002) Source contributions of PM in Sweden—implications for abatement strategies. Institute of Applied Environmental Research (ITM). Stockholm. Presentation at ‘particles in the size of 2.5 to 10 μm in urban areas’ workshop, Berlin, Germany, November 4–6, 2002Google Scholar
  18. Katsouyanni K, Touloumi G, Samoli E et al (2001) Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. Epidem 12:521–531CrossRefGoogle Scholar
  19. Kavouras IG, Mihalopoulos N, Stephanou EG (1998) Formation of atmospheric particles from organic acids produced by forests. Nature 395:683–686CrossRefGoogle Scholar
  20. Korcz M, Fudała J, Kliś C (2009) Estimation of windblown dust emissions in Europe and its vicinity. Atmos Environ 43:1410–1420CrossRefGoogle Scholar
  21. Lalas DP, Asimakopoulos DN, Deligiorgi DG et al (1983) Sea-breeze circulation and photochemical pollution in Athens, Greece. Atmos Environ 17:1621–1632CrossRefGoogle Scholar
  22. Last JA, Ward R, Temple L et al (2004) Ovalbumin-induced airway inflammation and fibrosis in mice also exposed to ultrafine particles. Inhal Toxicol 16:93–102CrossRefGoogle Scholar
  23. Lianou M, Chalbot M-C, Kotronarou A et al (2007) Dependence of home outdoor particulate mass and number concentrations on residential and traffic features in urban areas. J Air Waste Manage Assoc 57:1507–1517CrossRefGoogle Scholar
  24. Maenhaut W, Raes N, Chi XG et al (2005) Chemical composition and mass closure for fine and coarse aerosols at a kerbside in Budapest, Hungary, in spring 2002. XRay Spectrom 34:290–296CrossRefGoogle Scholar
  25. Marple VA, Rubow KL, Turner W et al (1987) Low flow rate sharp cut impactors for indoor air sampling, design and calibration. J Air Pollut Control Assoc 37:1303–1307Google Scholar
  26. McDonnell WF, Nishino-Ishikawa N, Petersen FF et al (2000) Relationships of mortality with the fine and coarse fractions of long-term ambient PM10 concentrations in nonsmokers. J Exp Anal Env Epidem 10:427–436CrossRefGoogle Scholar
  27. Oberdoster G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arc Occup Environ Health 74:1–8CrossRefGoogle Scholar
  28. Peng RD, Dominici F, Pastor-Barriuso R et al (2005) Seasonal analyses of air pollution and mortality in 100 US cities. Am J Epidemiol 161:585–594CrossRefGoogle Scholar
  29. Pope CA, Burnett RT, Thun MJ et al (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Am Med Assoc 287:1132–1141CrossRefGoogle Scholar
  30. Putaud JP, Raes F, Van Dingenen R et al (2004) European aerosol phenomenology-2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 38:2579–2595CrossRefGoogle Scholar
  31. Puustinen A, Hämeri K, Pekkanen J et al (2007) Spatial variation of particle number and mass over four European cities. Atmos Environ 41:6622–6636CrossRefGoogle Scholar
  32. Roorda-Knape MC, Janssen NAH, de Hartog JJ et al (1998) Air pollution from traffic in city districts near major motorways. Atmos Environ 32:1921–1930CrossRefGoogle Scholar
  33. Russell M, Allen DT, Collins DR et al (2004) Daily, seasonal, and spatial trends in PM2.5 mass and composition in southern Texas. Aerosol Sci Technol 38:14–26CrossRefGoogle Scholar
  34. Ruuskanen J, Tuch TH, Brink HT et al (2001) Concentrations of ultrafine, fine and PM2.5 particles in three European cities. Atmos Environ 35:3729–3738CrossRefGoogle Scholar
  35. Samet JM, Dominici F, Curriero FC et al (2000) Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. New Engl J Med 343:1742–1749CrossRefGoogle Scholar
  36. Sardard SB, Fine PM, Yoon H et al (2004) Associations between particle number and gaseous co-pollutant concentrations in the Los Angeles Basin. J Air Waste Manage Assoc 54:992–1005Google Scholar
  37. Snel SC, Larssen S (2004) Trends in PM10 concentrations in European cities 1997–2002. Norwegian Institute for Air Research, KjellerGoogle Scholar
  38. Van Dingenen R, Raes F, Putaud JP et al (2004) A European aerosol phenomenology-1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 38:561–2577Google Scholar
  39. Vautard R, Bessagnet B, Min C et al (2005) On the contribution of natural Aeolian sources to particulate matter concentrations in Europe: testing hypotheses with a modelling approach. Atmos Environ 39:3291–3303CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Maria Lianou
    • 1
  • Marie-Cecile Chalbot
    • 1
  • Ilias G. Kavouras
    • 1
    • 2
  • Anastasia Kotronarou
    • 1
  • Anna Karakatsani
    • 3
  • Antonis Analytis
    • 3
  • Klea Katsouyanni
    • 3
  • Arto Puustinen
    • 4
  • Kaarle Hameri
    • 5
  • Marko Vallius
    • 6
  • Juha Pekkanen
    • 7
  • Claire Meddings
    • 8
  • Roy M. Harrison
    • 8
  • Jon G. Ayres
    • 9
  • Harry ten Brick
    • 10
  • Gerard Kos
    • 10
  • Kees Meliefste
    • 11
  • Jeroen de Hartog
    • 11
  • Gerard Hoek
    • 11
  1. 1.Institute for Environmental Research and Sustainable DevelopmentNational Observatory of AthensAthensGreece
  2. 2.ELFE Unite MixteINED/INSERMParis Cedex 20France
  3. 3.National Kapodistrian University of Athens Medical SchoolAthensGreece
  4. 4.Finnish Institute of Occupational HealthHelsinkiFinland
  5. 5.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  6. 6.University of Eastern FinlandKuopioFinland
  7. 7.Department of Environmental HealthNational Institute for Health and Welfare (THL)KuopioFinland
  8. 8.Division of Environmental Health and Risk ManagementUniversity of BirminghamBirminghamUK
  9. 9.Institute of Occupational and Environmental MedicineUniversity of BirminghamBirminghamUK
  10. 10.Energy Research Center of The NetherlandsPettenThe Netherlands
  11. 11.Institute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations