Environmental Science and Pollution Research

, Volume 18, Issue 6, pp 1004–1014 | Cite as

Natural dissolved humic substances increase the lifespan and promote transgenerational resistance to salt stress in the cladoceran Moina macrocopa

  • Albert L. Suhett
  • Christian E. W. Steinberg
  • Jayme M. Santangelo
  • Reinaldo L. Bozelli
  • Vinicius F. Farjalla
Research Article

Abstract

Purpose

Evidence has accumulated that humic substances (HS) are not inert biogeochemicals. Rather, they cause stress symptoms and may modulate the life history of aquatic organisms. Nevertheless, it is still not clear how HS interact with additional stressors and if their effects are transgenerational. We tested the interactive effects of HS and salt to cladocerans, discussing their consequences for the persistence in fluctuating environments, such as coastal lagoons.

Methods

We used life-table experiments to test the effects of natural HS from a polyhumic coastal lagoon (0, 5, 10, 20, 50, and 100 mg dissolved organic carbon (DOC) L−1) on the life-history of the cladoceran Moina macrocopa. We further tested the effects of HS (10 mg DOC L−1), within and across generations, on the resistance of M. macrocopa to salt stress (5.5 g L−1).

Results

HS at 5–20 mg DOC L−1 extended the mean lifespan of M. macrocopa by ~30%. HS also increased body length at maturity by ~4% at 5–50 mg DOC L−1 and stimulated male offspring production at all tested concentrations. Exposure to HS (even maternal only) alleviated the salt-induced reduction of somatic growth. Co-exposure to HS increased body volume by 12–22% relative to salt-only treatments, while pre-exposure to HS increased body volume by 40–56% in treatments with salt presence, when compared to non-pre-exposed animals.

Conclusions

HS at environmentally realistic concentrations, by acting as mild chemical stressors, modify crucial life-history traits of M. macrocopa, favoring its persistence in fluctuating environments. Some of the effects of HS are even transgenerational.

Keywords

Humic substances Cross-tolerance Zooplankton Salinity Moina Maternal effects 

References

  1. Bouchnak R, Steinberg CEW (2010) Modulation of longevity in Daphnia magna by food quality and simultaneous exposure to dissolved humic substances. Limnologica 40:86–91Google Scholar
  2. Cerbin S, Kraak MHS, de Voogt P, Visser PM, Van Donk E (2010) Combined and single effects of pesticide carbaryl and toxic Microcystis aeruginosa on the life history of Daphnia pulicaria. Hydrobiologia 643:129–138CrossRefGoogle Scholar
  3. Connon R, Hooper HL, Sibly RM, Lim FL, Heckmann LH, Moore DJ, Watanabe H, Soetaert A, Cook K, Maund SJ, Hutchinson TH, Moggs J, De Coen W, Igichi T, Callaghan A (2008) Linking molecular and population stress responses in Daphnia magna exposed to cadmium. Environ Sci Technol 42:2181–2188CrossRefGoogle Scholar
  4. Coors A, De Meester L (2008) Synergistic, antagonistic and additive effects of multiple stressors: predation threat, parasitism and pesticide exposure in Daphnia magna. J App Ecol 45(6):1820–1828CrossRefGoogle Scholar
  5. Coors A, Hammers-Wirtz M, Ratte HT (2004) Adaptation to environmental stress in Daphnia magna simultaneously exposed to a xenobiotic. Chemosphere 56(4):395–404CrossRefGoogle Scholar
  6. Coors A, Decaestecker E, Jansen M, De Meester L (2008) Pesticide exposure strongly enhances parasite virulence in an invertebrate host model. Oikos 117(12):1840–1846CrossRefGoogle Scholar
  7. D'Abramo LR (1980) Ingestion rate decrease as the stimulus for sexuality in populations of Moina macrocopa. Limnol Oceanogr 25(3):422–429CrossRefGoogle Scholar
  8. Eads BD, Andrews J, Colbourne JK (2008) Ecological genomics in Daphnia: stress responses and environmental sex determination. Heredity 100(2):184–190CrossRefGoogle Scholar
  9. Elmoor-Loureiro LMA, Santangelo JM, Lopes PM, Bozelli RL (2010) A new report of Moina macrocopa (Straus, 1820) (Cladocera, Anomopoda) in South America. Braz J Biol 70(1):225–226CrossRefGoogle Scholar
  10. Esteves FA, Caliman A, Santangelo JM, Guariento RD, Farjalla VF, Bozelli RL (2008) Neotropical coastal lagoons: An appraisal of their biodiversity, functioning, threats and conservation management. Braz J Biol 68(4):967–981CrossRefGoogle Scholar
  11. Euent S, Menzel R, Steinberg CEW (2008) Gender-specific lifespan modulation in Daphnia magna by a dissolved humic substances preparation. Ann Env Sci 2:7–10Google Scholar
  12. Farjalla VF, Faria BM, Esteves FA, Bozelli RL (2001) Bacterial abundance and biomass and relations with abiotic factors, in 14 costal lagoons of Rio de Janeiro State. In: Faria BM, Farjalla VF, Esteves FA (eds) Aquatic Microbial Ecology in Brazil. Series Oecologia Brasiliensis, vol vol. IX. PPGE-UFRJ, Rio de Janeiro, Brasil, pp 65-76Google Scholar
  13. Farjalla VF, Amado AM, Suhett AL, Meirelles-Pereira F (2009) DOC removal paradigms in highly humic aquatic ecosystems. Env Sci Poll Res 16:531–538CrossRefGoogle Scholar
  14. Folt CL, Chen CY, Moore MV, Burnaford J (1999) Synergism and antagonism among multiple stressors. Limnol Oceanogr 44(3):864–877CrossRefGoogle Scholar
  15. Forbes VE (2000) Is hormesis an evolutionary expectation? Funct Ecol 14(1):12–24CrossRefGoogle Scholar
  16. Frías-Espericueta MG, Voltolina D, Osuna-López I, Izaguirre-Fierro G (2009) Toxicity of metal mixtures to the Pacific white shrimp Litopenaeus vannamei postlarvae. Mar Env Res 68(5):223–226CrossRefGoogle Scholar
  17. Gems D, McElwee JJ (2003) Ageing—microarraying mortality. Nature 424(6946):259–261CrossRefGoogle Scholar
  18. Gyllstrom M, Hansson LA (2004) Dormancy in freshwater zooplankton: Induction, termination and the importance of benthic-pelagic coupling. Aquat Sci 66(3):274–295CrossRefGoogle Scholar
  19. Hessen DO, Andersen T, Lyche A (1990) Carbon metabolism in a humic lake—pool sizes and cycling through zooplankton. Limnol Oceanogr 35(1):84–99CrossRefGoogle Scholar
  20. Heugens EHW, Tokkie LTB, Kraak MHS, Hendriks AJ, van Straalen NM, Admiraal W (2006) Population growth of Daphnia magna under multiple stress conditions: Joint effects of temperature, food, and cadmium. Env Toxicol Chem 25(5):1399–1407CrossRefGoogle Scholar
  21. Kefford BJ, Papas PJ, Crowther D, Nugegoda D (2002) Are salts toxicants? Australas J Ecotoxicol 8:63–68Google Scholar
  22. Kirkwood TBL (2002) Evolution of ageing. Mech Ageing Dev 123(7):737–745CrossRefGoogle Scholar
  23. Kirkwood TBL, Austad SN (2000) Why do we age? Nature 408(6809):233–238CrossRefGoogle Scholar
  24. Kjerfve B (1994) Coastal lagoons. In: Kjerfve B (ed) Coastal Lagoon Processes. Elsevier Science, Amsterdam, pp 1–8CrossRefGoogle Scholar
  25. LaMontagne JM, McCauley E (2001) Maternal effects in Daphnia: what mothers are telling their offspring and do they listen? Ecol Lett 4:64–71CrossRefGoogle Scholar
  26. Laque T, Farjalla VF, Rosado AS, Esteves FA (2010) Spatiotemporal variation of bacterial community composition and possible controlling factors in tropical shallow lagoons. Microb Ecol 59(4):819–829CrossRefGoogle Scholar
  27. Martínez-Jerónimo F, Martínez-Jerónimo L (2007) Chronic effect of NaCl salinity on a freshwater strain of Daphnia magna Straus (Crustacea: Cladocera): a demographic study. Ecotox Environ Safe 67(3):411–416CrossRefGoogle Scholar
  28. McKnight DM, Aiken GR (1998) Sources and age of aquatic humus. In: Hessen DO, Tranvik LJ (eds) Ecological Studies: aquatic humic substances, vol 133. Springer, Berlin, pp 9–39Google Scholar
  29. Meinelt T, Schreckenbach K, Knopf K, Wienke A, Stuber A, Steinberg CEW (2004) Humic substances affect physiological condition and sex ratio of swordtail (Xiphophorus helleri Heckel). Aquat Sci 66(2):239–245CrossRefGoogle Scholar
  30. Menzel R, Sturzenbaum S, Barenwaldt A, Kulas J, Steinberg CEW (2005) Humic material induces behavioral and global transcriptional responses in the nematode Caenorhabditis elegans. Environ Sci Technol 39(21):8324–8332CrossRefGoogle Scholar
  31. Minois N (2000) Longevity and aging: beneficial, effects of exposure to mild stress. Biogerontology 1(1):15–29CrossRefGoogle Scholar
  32. Mohammed A, Agard JBR (2007) Comparative salinity tolerance of three indigenous tropical freshwater cladoceran species: Moinodaphnia macleayi, Ceriodaphnia rigaudii and Diaphanosoma brachyurum. Env Monit Assess 127(1–3):307–313CrossRefGoogle Scholar
  33. Nandini S, Mayeli SM, Sarma SSS (2004) Effect of stress on the life-table demography of Moina macrocopa. Hydrobiologia 526(1):245–254CrossRefGoogle Scholar
  34. Nichols HW (1973) Growth media—freshwater. In: Stein J (ed) Handbook of phycological methods: culture methods and growth measurements. University Press, London, pp 7–24Google Scholar
  35. Oda S, Tatarazako N, Watanabe H, Morita M, Iguchi T (2005) Production of male neonates in four cladoceran species exposed to a juvenile hormone analog, fenoxycarb. Chemosphere 60(1):74–78CrossRefGoogle Scholar
  36. Petrusek A (2002) Moina (Crustacea: Anomopoda, Moinidae) in the Czech Republic: a review. Acta Soc Zool Bohem 66:213–220Google Scholar
  37. Pietrzak B, Grzesiuk M, Bednarska A (2010) Food quantity shapes life history and survival strategies in Daphnia magna (Cladocera). Hydrobiologia 643:51–54CrossRefGoogle Scholar
  38. Pietsch K, Hofmann S, Henkel R, Saul N, Menzel R, Steinberg CEW (2010) The plant polyphenol caffeic acid affects life traits differently in the nematode Caenorhabditis elegans and the cladoreran Moina macrocopa. Fresenius Env Bull 19:1238–1244Google Scholar
  39. Räsänen K, Kruuk LEB (2007) Maternal effects and evolution at ecological time-scales. Funct Ecol 21:408–421CrossRefGoogle Scholar
  40. Roff DA (2002) Life history evolution. Sinauer Associates, MassachusettsGoogle Scholar
  41. Santangelo JM, Bozelli RL, Rocha AD, Esteves FD (2008) Effects of slight salinity increases on Moina micrura (Cladocera) populations: field and laboratory observations. Mar Freshw Res 59(9):808–816CrossRefGoogle Scholar
  42. Sarma SSS, Nandini S (2006) Review of recent ecotoxicological studies on cladocerans. J Environ Sci Health, Part B, Pestic Food Contam Agric Wastes 41(8):1417–1430Google Scholar
  43. Sarma SSS, Nandini S, Gulati RD (2002) Cost of reproduction in selected species of zooplankton (rotifers and cladocerans). Hydrobiologia 481(1–3):89–99CrossRefGoogle Scholar
  44. Sarma SSS, Nandini S, Morales-Ventura J, Delgado-Martínez I, González-Valverde L (2006) Effects of NaCl salinity on the population dynamics of freshwater zooplankton (rotifers and cladocerans). Aquat Ecol 40(3):349–360CrossRefGoogle Scholar
  45. Saul N, Pietsch K, Menzel R, Steinberg CEW (2008) Quercetin-mediated longevity in Caenorhabditis elegans: is DAF-16 involved? Mech Ageing Dev 129(10):611–613CrossRefGoogle Scholar
  46. Saul N, Pietsch K, Menzel R, Sturzenbaum SR, Steinberg CEW (2010) The longevity effect of tannic acid in Caenorhabditis elegans: disposable soma meets hormesis. J Gerontol A Biol Sci Med Sci 65(6):626–635CrossRefGoogle Scholar
  47. Schallenberg M, Hall CJ, Burns CW (2003) Consequences of climate-induced salinity increases on zooplankton abundance and diversity in coastal lakes. Mar Ecol Prog Ser 251:181–189CrossRefGoogle Scholar
  48. Steinberg CEW (2003) Ecology of humic substances in freshwaters. Springer, BerlinGoogle Scholar
  49. Steinberg CEW, Paul A, Pflugmacher S, Meinelt T, Klocking R, Wiegand C (2003) Pure humic substances have the potential to act as xenobiotic chemicals—a review. Fresenius Env Bull 12(5):391–401Google Scholar
  50. Steinberg CEW, Kamara S, Prokhotskaya VY, Manusadžianas L, Karasyova TA, Timofeyev MA, Jie Z, Paul A, Meinelt T, Farjalla VF, Matsuo AYO, Burnison BK, Menzel R (2006) Dissolved humic substances—ecological driving forces from the individual to the ecosystem level? Freshw Biol 51(7):1189–1210CrossRefGoogle Scholar
  51. Steinberg CEW, Saul N, Pietsch K, Meinelt T, Rienau S, Menzel R (2007) Dissolved humic substances facilitate fish life in extreme aquatic environments and have the potential to extend the lifespan of Caenorhabidts elegas. Ann Env Sci 1:81–90Google Scholar
  52. Steinberg CEW, Meinelt T, Timofeyev MA, Bittner M, Menzel R (2008) Dissolved humic substances. Part 2: interactions with organisms. Env Sci Poll Res 15(2):128–135CrossRefGoogle Scholar
  53. Steinberg CEW, Ouerghemmi N, Herrmann S, Bouchnak R, Timofeyev MA, Menzel R (2010a) Stress by poor food quality and exposure to humic substances: Daphnia magna responds with oxidative stress, lifespan extension, but reduced offspring numbers. Hydrobiologia 652:223–236CrossRefGoogle Scholar
  54. Steinberg CEW, Vićentić L, Rauch R, Bouchnak R, Suhett AL, Menzel R (2010b) Exposure to humic material modulates life history traits of the cladocerans Moina macrocopa and M. micrura. Chem EcolGoogle Scholar
  55. Suhett AL, Amado AM, Enrich-Prast A, Esteves FA, Farjalla VF (2007) Seasonal changes of dissolved organic carbon photo-oxidation rates in a tropical humic lagoon: the role of rainfall as a major regulator. Can J Fish Aquat Sci 64(9):1266–1272CrossRefGoogle Scholar
  56. Suhett AL, MacCord F, Amado AM, Farjalla VF, Esteves FA Photodegradation of dissolved organic carbon in humic coastal lagoons (Rio de Janeiro, Brazil). In: Martin-Neto L, Milori DMBP, Silva WTL (eds) Proceedings of the XII Meeting of the International Humic Substances Society, São Pedro, SP, Brasil, 2004. Humic substances and soil and water environment. Embrapa, pp 61–63Google Scholar
  57. Teschner M (1995) Effects of salinity on the life-history and fitness of Daphnia magna—variability within and between populations. Hydrobiol 307(1–3):33–41CrossRefGoogle Scholar
  58. Timofeyev MA, Shatilina ZM, Kolesnichenko AV, Bedulina DS, Kolesnichenko VV, Pflugmacher S, Steinberg CEW (2006a) Natural organic matter (NOM) induces oxidative stress in freshwater amphipods Gammarus lacustris Sars and Gammarus tigrinus (Sexton). Sci Total Environ 366(2–3):673–681Google Scholar
  59. Timofeyev MA, Shatilina ZM, Kolesnichenko AV, Kolesnichenko VV, Steinberg CEW (2006b) Specific antioxidant reactions to oxidative stress promoted by natural organic matter in two amphipod species from Lake Baikal. Environ Toxicol 21(2):104–110CrossRefGoogle Scholar
  60. Waiser MJ, Robarts RD (2004) Photodegradation of DOC in a shallow prairie wetland: evidence from seasonal changes in DOC optical properties and chemical characteristics. Biogeochemistry 69(2):263–284CrossRefGoogle Scholar
  61. Wang WH, Bray CM, Jones MN (1999) The fate of 14C-labelled humic substances in rice cells in culture. J Plant Physiol 154(2):203–211Google Scholar
  62. Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic, CaliforniaGoogle Scholar
  63. Yoshinaga T, Kaneko G, Kinoshita S, Furukawa S, Tsukamoto K, Watabe S (2005) Insulin-like growth factor signaling pathway involved in regulating longevity of rotifers. Hydrobiologia 546:347–352CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Albert L. Suhett
    • 1
  • Christian E. W. Steinberg
    • 2
  • Jayme M. Santangelo
    • 3
  • Reinaldo L. Bozelli
    • 1
  • Vinicius F. Farjalla
    • 1
  1. 1.Laboratório de Limnologia, Departamento de EcologiaUniversidade Federal do Rio de Janeiro (UFRJ)Ilha do FundãoRio de JaneiroBrazil
  2. 2.Laboratory for Freshwater and Stress Ecology, Department of BiologyHumboldt Universität zu BerlinBerlinGermany
  3. 3.Departamento de Ciências Ambientais, Instituto de FlorestasUniversidade Federal Rural do Rio de Janeiro (UFRRJ)SeropédicaBrazil

Personalised recommendations