Characterization of dioxin-like contamination in soil and sediments from the “hot spot” area of petrochemical plant in Pancevo (Serbia)

  • Sonja Kaisarevic
  • Klara Hilscherova
  • Roland Weber
  • Kristina L. Sundqvist
  • Mats Tysklind
  • Ernest Voncina
  • Stanka Bobic
  • Nebojsa Andric
  • Kristina Pogrmic-Majkic
  • Mirjana Vojinovic-Miloradov
  • John Paul Giesy
  • Radmila Kovacevic
Research Article

Abstract

Purpose

Combinatorial bio/chemical approach was applied to investigate dioxin-like contamination of soil and sediment at the petrochemical and organochlorine plant in Pancevo, Serbia, after the destruction of manufacturing facilities that occurred in the spring of 1999 and subsequent remediation actions.

Materials and methods

Soil samples were analyzed for indicator polychlorinated biphenyls (PCBs) by gas chromatography/electron capture detection (GC/ECD). Prioritized soil sample and sediment samples from the waste water channel were analyzed for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) by high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS). Microethoxyresorufin o-deethylase (Micro-EROD) and H4IIE–luciferase bioassays were used for monitoring of dioxin-like compounds (DLC) and for better characterization of dioxin-like activity of soil samples.

Results

Bioanalytical results indicated high dioxin-like activity in one localized soil sample, while the chemical analysis confirmed the presence of large quantities of DLC: 3.0 × 105 ng/g d.w. of seven-key PCBs, 8.2 ng/g d.w. of PCDD/Fs, and 3.0 × 105 ng/g d.w. of planar and mono-ortho PCBs. In the sediment, contaminant concentrations were in the range 2–8 ng/g d.w. of PCDD/Fs and 9–20 ng/g d.w. of PCBs.

Conclusions

This study demonstrates the utility of combined application of bioassays and instrumental analysis, especially for developing and transition country which do not have capacity of the expensive instrumental analysis. The results indicate the high contamination of soil in the area of petrochemical plant, and PCDD/Fs contamination of the sediment from the waste water channel originating from the ethylene dichloride production.

Keywords

Dioxin-like activity Ethylene dichloride PCBs PCDD/Fs Pattern analysis Petrochemical industry 

Supplementary material

11356_2010_418_MOESM1_ESM.pdf (77 kb)
ESM 1(PDF 76.9 kb)
11356_2010_418_MOESM2_ESM.pdf (318 kb)
ESM 2(PDF 318 kb)

References

  1. Aarts JMMJG, Denison MS, Cox MA, Schalk MA, Garrison PM, Tullis K, de Haan LH, Brouwer A (1995) Species-specific antagonism of Ah receptor action by 2, 2′, 5, 5′-tetrachloro- and 2, 2′, 3, 3′, 4, 4′-hexachlorobiphenyl. Eur J Pharmacol Environ Toxicol Pharmacol Sect 293:463–474CrossRefGoogle Scholar
  2. Andersson E, Rotander A, von Kronhelm T, Berggren A, Ivarsson P, Hollert H, Engwall M (2009) AhR agonist and genotoxicant bioavailability in a PAH-contaminated soil undergoing biological treatment. Environ Sci Pollut Res 16:521–530CrossRefGoogle Scholar
  3. Behnisch PA, Hosoe K, Brouwer A, Sakai S-I (2002) Screening of dioxin-like toxicity equivalents for various matrices with wildtype and recombinant rat hepatoma H4IIE cells. Toxicol Sci 69:125–130CrossRefGoogle Scholar
  4. Behnisch PA, Hosoe K, Sakai S-I (2003) Brominated dioxin-like compounds: in vitro assessment in comparison to classical dioxin-like compounds and other polyaromatic compounds. Environ Int 29:861–877CrossRefGoogle Scholar
  5. Bittner M, Janošek J, Hilscherova K, Giesy J, Holoubek I, Blaha L (2006) Activation of Ah receptor by pure humic acids. Environ Toxicol 21:338–342CrossRefGoogle Scholar
  6. Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bioanal Chem 377:397–407CrossRefGoogle Scholar
  7. Brack W, Segner H, Möder M, Schüürmann G (2000) Fixed-effect-level toxicity equivalents—a suitable parameter for assessing ethoxyresorufin-O-deethylase induction potency in complex environmental samples. Environ Toxicol Chem 19:2493–2501Google Scholar
  8. Brown VJ (2004) Battle scars—global conflicts and environmental health. Environ Health Perspect 112:A994–A1003CrossRefGoogle Scholar
  9. Carroll WF Jr, Berger TC, Borrelli FE, Garrity PJ, Jacobs RA, Ledvina J, Lewis JW, McCreedy RL, Smith TP, Tuhovak DR, Weston AF (2001) Characterization of emissions of dioxins and furans from ethylene dichloride, vinyl chloride monomer and polyvinyl chloride facilities in the United States. Consolidated report. Chemosphere 43:689–700CrossRefGoogle Scholar
  10. Fattore E, Benfenati E, Mariani G, Fanelli R (1997) Patterns and sources of polychlorinated dibenzo-p-dioxins and dibenzofurans in sediments from the Venice Lagoon, Italy. Environ Sci Technol 31:1777–1784CrossRefGoogle Scholar
  11. Heinisch E, Kettrup A, Bergheim W, Wenzel S (2007) Persistent chlorinated hydrocarbons, source-oriented monitoring in aquatic media. 6. Strikingly high contaminated sites. Fresenius Environ Bull 16(10):1248–1273Google Scholar
  12. Hilscherova K, Kannan K, Kang Y-S, Holoubek I, Machala M, Masunaga S, Nakanishi J, Giesy JP (2001) Characterization of dioxin-like activity of sediments from a Czech river basin. Environ Toxicol Chem 20:2768–2777CrossRefGoogle Scholar
  13. Im SH, Kannan K, Giesy JP, Matsuda M, Wakimoto T (2002) Concentrations and profiles of polychlorinated dibenzo-p-dioxins and dibenzofurans in soils from Korea. Environ Sci Technol 36:3700–3705CrossRefGoogle Scholar
  14. Isosaari P, Kohonen T, Kiviranta H, Tuomisto J, Vartiainen T (2000) Assesment of levels, distribution, and risks of polychlorinated dibenzo-p-dioxins and dibenzofurans in the vicinity of a vinyl chloride monomer production plant. Environ Sci Technol 34:2684–2689CrossRefGoogle Scholar
  15. Kaisarevic S, Andric N, Bobic S, Trickovic J, Teodorovic I, Vojinovic-Miloradov M, Kovacevic R (2007) Detection of dioxin-like contaminants in soil from the area of oil refineries in Vojvodina region of Serbia. Bull Environ Contam Toxicol 79:422–426CrossRefGoogle Scholar
  16. Kaisarevic S, Lubcke-von Varel U, Orcic D, Streck G, Schulze T, Pogrmic K, Teodorovic I, Brack W, Kovacevic R (2009) Effect-directed analysis of contaminated sediment from the wastewater canal in Pancevo industrial area, Serbia. Chemosphere 77:907–913CrossRefGoogle Scholar
  17. Krizanec B, Majcen Le Marechal A, Voncina E, Brodnjak-Voncina D (2005) Presence of dioxins in textile dyes and their fate during the dyeing processes. Acta Chim Slov 52:111–118Google Scholar
  18. Nadal M, Schuhmacher M, Domingo JL (2007) Levels of metals, PCBs, PCNs and PAHs in soils of a highly industrialized chemical/petrochemical area: temporal trend. Chemosphere 66:267–276CrossRefGoogle Scholar
  19. Norwegian SFT (2005) Veileder for risikovurdering av forurenset sediment (TA-2085/2005). Rev 1, juni 2005Google Scholar
  20. Picer M, Kovacevic R, Picer N, Kobasic VH, Calic V, Zoric S (2006) Characterization of soil and sediment samples collected from the Zadar area, Croatia, by GC-ECD PCB analysis and bioassay. Bull Environ Contam Toxicol 77:687–693CrossRefGoogle Scholar
  21. Radonic J, Turk Sekulic M, Vojinovic Miloradov M, Cupr P, Klanova J (2009) Gas-particle partitioning of persistent organic pollutants in the Western Balkan countries affected by war conflicts. Environ Sci Pollut Res 16:65–72CrossRefGoogle Scholar
  22. Rastall A, Getting D, Goddard J, Roberts DR, Erdinger L (2006) A biomimetic approach to the detection and identification of estrogen receptor agonists in surface waters using semipermeable membrane devices (SPMDs) and bioassay-directed chemical analysis. Environ Sci Pollut Res 13(4):256–267CrossRefGoogle Scholar
  23. Sanderson JT, Aarts JMMJG, Brouwer A, Froese KL, Denison MS, Giesy JP (1996) Comparison of Ah Receptor-mediated luciferase and ethoxyresorufin-O-deethylase induction in H4IIE cells: implications for their use as bioanalytical tools for the detection of polyhalogenated aromatic hydrocarbons. Toxicol Appl Pharmacol 137:316–325CrossRefGoogle Scholar
  24. Song M, Jiang Q, Xu Y, Liu H, Lam PKS, O’Toole DK, Zhang Q, Giesy JP, Jiang G (2006) AhR-active compounds in sediments of the Haihe and Dagu Rivers, China. Chemosphere 66:1222–1230CrossRefGoogle Scholar
  25. Stockholm Convention (2001) http://www.pops.int
  26. Sundqvist KL, Tysklind M, Cato I, Bignert A, Wiberg K (2009) Levels and homologue profiles of PCDD/Fs in sediments along the Swedish coast of the Baltic Sea. Environ Sci Pollut Res 16(4):396–409CrossRefGoogle Scholar
  27. Teodorovic I (2009) Ecotoxicological research and related legislation in Serbia. Environ Sci Pollut Res 16:S123–S129CrossRefGoogle Scholar
  28. Torres JPM, Leite C, Krauss T, Weber R (2008) A contaminated site from the chlorine/organochlorine industry as source of PCDD/F contamination of citrus pulp pellets used as animal feed in Europe during the late 1990’s. Organohalogen Compounds 70:793–796Google Scholar
  29. UNEP (1999a) UNEP Final Report: The Kosovo conflict: consequences for the environment & human settlements, http://postconflict.unep.ch/publications.php?prog=kosovo
  30. UNEP (1999b) UNEP/UNCHS Balkans Task Force. BTF—Technical Industrial Sites Mission Report: Analytical Laboratory Results from the German Federal Environmental Agency and Brandenburg State Office for Environment. <http://www.grid.unep.ch/btf/missions/sites/obrenovac.pdf>.
  31. UNEP (2004) From conflict to sustainable development. Assessment and clean-up in Serbia and Montenegro, http://postconflict.unep.ch/publications/sam.pdf
  32. van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Toumisto J, Tysklind M, Walker N, Peterson RE (2006) The 2005 World Health Organization re-evaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93:223–241CrossRefGoogle Scholar
  33. Verta M, Kiviranta H, Salo S, Malve O, Korhonen M, Verkasalo PK, Ruokojärvi P, Rossi E, Hanski A, Päätalo K, Vartiainen T (2009) A decision framework for possible remediation of contaminated sediments in the River Kymijoki, Finland. Environ Sci Pollut Res 16:95–105CrossRefGoogle Scholar
  34. Weber R, Gaus C, Tysklind M, Johnston P, Forter M, Hollert H, Heinisch E, Holoubek I, Lloyd-Smith M, Masunaga S, Moccarelli P, Santillo D, Seike N, Symons R, Torres JPM, Verta M, Varbelow G, Vijgen J, Watson A, Costner P, Woelz J, Wycisk P, Zennegg M (2008) Dioxin- and POP-contaminated sites—contemporary and future relevance and challenges. Environ Sci Pollut Res 15:363–393CrossRefGoogle Scholar
  35. Wölz J, Engwall M, Maletz S, Olsmann H, van Bavel B, Kammann U, Klempt M, Weber R, Braunbeck T, Hollert H (2008) Changes in toxicity and dioxin-like activity of suspended particulate matter during flood events at the rivers Neckar and Rhine. Environ Sci Pollut Res 15:536–553CrossRefGoogle Scholar
  36. Zeiger M, Haag R, Höckel J, Schrenk D, Schmitz H-J (2001) Inducing effects of dioxin-like polychlorinated biphenyls on CYP1A in the human hepatoblastoma cell line HepG2, the rat hepatoma cell line H4IIE, and rat primary hepatocytes: comparison of relative potencies. Toxicol Sci 63:65–73CrossRefGoogle Scholar
  37. Zoric S, Andric N, Sudji J, Klanova J, Jovetic S, Kovacevic R, Vojinovic-Miloradov M (2004) Ethoxyresorufin-O-deethylase induction potency in sediment samples from rivers Lepenica and Morava—surrounding area of Kragujevac “hot spot”. Organohalogen Compounds 66:598–602Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sonja Kaisarevic
    • 1
  • Klara Hilscherova
    • 2
  • Roland Weber
    • 3
  • Kristina L. Sundqvist
    • 4
  • Mats Tysklind
    • 4
  • Ernest Voncina
    • 5
  • Stanka Bobic
    • 6
  • Nebojsa Andric
    • 1
  • Kristina Pogrmic-Majkic
    • 1
  • Mirjana Vojinovic-Miloradov
    • 1
  • John Paul Giesy
    • 7
    • 8
    • 9
  • Radmila Kovacevic
    • 1
  1. 1.Laboratory for Ecotoxicology (LECOTOX)University of Novi Sad Faculty of ScienceNovi SadSerbia
  2. 2.Research Centre for Environmental Chemistry and Ecotoxicology (RECETOX)Masaryk UniversityBrnoCzech Republic
  3. 3.POPs Environmental ConsultingGöppingenGermany
  4. 4.Department of ChemistryUmeå UniversityUmeåSweden
  5. 5.Institute of Public HealthMariborSlovenia
  6. 6.Institute of Occupational HealthNovi SadSerbia
  7. 7.Department Veterinary Biomedical SciencesUniversity of SaskatchewanSaskatoonCanada
  8. 8.Department of Zoology, National Food Safety and Toxicology CentreMichigan State UniversityEast LansingUSA
  9. 9.Department of Biology and ChemistryCity University of Hong KongKowloonChina

Personalised recommendations