Environmental Science and Pollution Research

, Volume 18, Issue 3, pp 428–435 | Cite as

Potential malaria outbreak in Germany due to climate warming: risk modelling based on temperature measurements and regional climate models

  • Marcel Holy
  • Gunther SchmidtEmail author
  • Winfried Schröder
Research Article



Climate warming can change the geographic distribution and intensity of the transmission of vector-borne diseases such as malaria. The transmitted parasites usually benefit from increased temperatures as both their reproduction and development are accelerated. Lower Saxony (northwestern Germany) has been a malaria region until the 1950s, and the vector species are still present throughout Germany. This gave reason to investigate whether a new autochthonous transmission could take place if the malaria pathogen was introduced again in Germany.

Materials and methods

The spatial distribution of potential temperature-driven malaria transmissions was investigated using the basic reproduction rate (R 0) to model and geostatistically map areas at risk of an outbreak of tertian malaria based on measured (1961–1990, 1991–2007) and predicted (1991–2020, 2021–2050, 2051–2080) monthly mean air temperature data.


From the computations, maps were derived showing that during the period 1961–1990, the seasonal transmission gate ranges from 0 to 4 months and then expands up to 5 months in the period 1991–2007. For the projection of future trends, the regional climate models REMO and WettReg were used each with two different scenarios (A1B and B1). Both modelling approaches resulted in prolonged seasonal transmission gates in the future, enabling malaria transmissions up to 6 months in the climate reference period 2051–2080 (REMO, scenario A1B).


The presented risk prognosis is based on the R 0 formula for the estimation of the reproduction of the malaria pathogen Plasmodium vivax. The presented model focuses on mean air temperatures; thus, other driving factors like the distribution of water bodies (breeding habitats) or population density are not integrated. Nevertheless, the modelling presented in this study can help identify areas at risk and initiate prevention. The described findings may also help in the investigation and assessment of related diseases caused by temperature-dependent vectors and pathogens, including those being dangerous for livestock as well, e.g. insect-borne bluetongue disease transmitted by culicoids.


Anopheles atroparvus Basic reproduction rate Climate change Malaria Modelling Plasmodium vivax 


  1. Bryan JH, Foley DH, Sutherst RW (1996) Malaria transmission and climate change in Australia. Med J Aust 164:345–347Google Scholar
  2. Dalitz MK (2005) Autochthone Malaria im mitteldeutschen Raum. Dissertation, University of HalleGoogle Scholar
  3. Doudier B, Bogreau H, DeVries A, Ponçon N, Stauffer WM, Fontenille D, Rogier C, Parola P (2007) Possible autochtonous malaria from Marseille to Minneapolis. Emerg Infect Dis 13(8):1236–1238Google Scholar
  4. Ebert B, Fleischer B (2008) Malaria: Stellungnahmen des Arbeitskreises Blut des Bundesministeriums für Gesundheit. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 51:236–249CrossRefGoogle Scholar
  5. Gimnig JE, Hightower AW, Hawley WA (2005) Application of geographic information systems to the study of the ecology of mosquitoes and mosquito-borne diseases. In: Takken W, Martens P, Bogers RJ (eds) Environmental change and malaria risk: global and local implications. Springer, Dordrecht, pp 15–26Google Scholar
  6. Gubler DJ, Reiter P, Ebi KL, Yap W, Nasci R, Patz JA (2001) Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ Health Persp 109(2):223–233CrossRefGoogle Scholar
  7. Hackett LW, Missiroli A (1935) The varieties of Anopheles maculipennis and their relation to the distribution of malaria in Europe. Riv Malariol XIV(1):1Google Scholar
  8. Hartelt K, Pluta S, Oehme R, Kimmig P (2008) Spread of ticks and tick-borne diseases in Germany due to global warming. Parasitol Res 103(Suppl 1):109–116CrossRefGoogle Scholar
  9. Heinz HJ (1950) Neuere Untersuchungen über die Verbreitung von Anopheles maculipennis in Hamburg. Z Angew Entomol 31(2):304–333CrossRefGoogle Scholar
  10. Hoshen MB, Morse AP (2004) A weather-driven model of malaria transmission. Malar J 3:32CrossRefGoogle Scholar
  11. Jetten TH, Takken W (1994) Anophelism without malaria: a review of the ecology and distribution of the genus Anopheles in Europe. Wageningen Agricultural University Papers 94(5)Google Scholar
  12. Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGIS Geostatistical Analyst. ESRI, RedlandsGoogle Scholar
  13. Kampen H, Kiel E, Schröder W (2007) Blauzungenkrankheit in Deutschland 2006. Epizootiologischer Hintergrund, entomologische Analyse und notwendige Konsequenzen. Umweltwissenschaften und Schadstoff-Forschung. Z Umweltchemie Ökotoxikologie 19:37–46CrossRefGoogle Scholar
  14. Krüger A, Rech A, Su XZ, Tannich E (2001) Two cases of autochthonous Plasmodium falciparum malaria in Germany with evidence for local transmission by indigenous Anopheles plumbeus. Trop Med Int Health 6(12):983–985CrossRefGoogle Scholar
  15. Kuhn KG, Campbell-Lendrum DH, Armstrong B, Davies CR (2003) Malaria in Britain: past, present, and future. PNAS 100(17):9997–10001CrossRefGoogle Scholar
  16. Leemans R (2005) Global environmental change and health. Integrating knowledge form natural, socioeconomic and medical sciences. In: Takken W, Martens P, Bogers RJ (eds) Environmental change and malaria risk. Global and local implications. Springer, Dordrecht, pp 15–26CrossRefGoogle Scholar
  17. Lindsay SW, Thomas CJ (2001) Global warming and risk of vivax malaria in Great Britain. Glob Change Hum Health 2(1):80–84CrossRefGoogle Scholar
  18. Maier WA, Grunewald J, Habedank B, Hartelt K, Kampen H, Kimmig P, Naucke T, Oehme R, Vollmer A, Schöler A, Schmitt C (2003) Mögliche Auswirkungen von Klimaveränderung auf die Ausbreitung von primär humanmedizinisch relevanten Krankheitserregern über tierische Vektoren sowie auf die wichtigen Humanparasiten in Deutschland. Climate Change 05/03, 389 ppGoogle Scholar
  19. Malecki JM, Kumar S, Johnson BF et al (2003) Local transmission of Plasmodium vivax malaria—Palm Beach county, Florida, 2003. MMWR 52(38):908–911Google Scholar
  20. Martens P, Kovats RS, Nijhof S, de Vries P, Livermore MTJ, Bradley DJ, Cox J, McMichael AJ (1999) Climate change and future population at risk of malaria. Glob Environ Change 9:89–107CrossRefGoogle Scholar
  21. Martini E (1920) Anopheles in Niedersachsen und die Malariagefahr. Hyg Rundsch 22:673–677Google Scholar
  22. Martini E (1946) Lehrbuch der medizinischen Entomologie. Gustav Fischer, JenaGoogle Scholar
  23. Mehlhorn H, Walldorf V, Klimpel S, Schmahl G (2008) Outbreak of bluetongue disease (BTD) in Germany and the danger for Europe. Parasitol Res 103(Suppl):79–86CrossRefGoogle Scholar
  24. Millet JP, Gercia de Olalla P, Carillo-Santisteve P, Gascón J, Treviňo B, Muňoz J, Gomez i Prat J, Cabezos J, Gonzáles Cordón A, Caylà JA (2008) Imported malaria in a cosmopolitan European city: a mirror image of the world epidemiological situation. Malar J 7:56CrossRefGoogle Scholar
  25. Mohrig W (1969) Die Culiciden Deutschlands. Parasitologische Schriftenreihe 18Google Scholar
  26. Mühlberger N et al (2004) Epidemiology and clinical features of vivax malaria imported to Europe: sentinel surveillance data from TropNetEurop. Malar J 3:5CrossRefGoogle Scholar
  27. Mühlens P (1930) Malaria. Neue Dtsch Klin VII(31):122–149Google Scholar
  28. Odeh IOA, McBratney AB, Chittleborough DJ (1995) Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma 67(3–4):215–226CrossRefGoogle Scholar
  29. Omumbo JA, Hay SI, Guerra CA, Snow RW (2004) The relationship between the Plasmodium falciparum parasite ratio in childhood and climate estimates of malaria transmission in Kenya. Malar J 3:17CrossRefGoogle Scholar
  30. Pastor A, Neely J, Goodfriend D et al (2002) Local transmission of Plasmodium vivax malaria—Virginia, 2002. MMWR 51(41):921–923Google Scholar
  31. IPCC (Intergovernmental Panel of Climate Change) (2007) Climate change 2007. Synthesis report. Geneva, 52 ppGoogle Scholar
  32. Ponçon N, Tran A, Toty C, Luty AJF, Fontenille D (2008) A quantitative risk assessment approach for mosquito-borne diseases: malaria re-emergence in southern France. Malar J 7:147CrossRefGoogle Scholar
  33. Ramsdale C, Snow K (2000) Distribution of the genus Anopheles in Europe. Eur Mosq Bull 7:1–26Google Scholar
  34. Reiter P (2000) Malaria and global warming in perspective? Emerg Infect Dis 6:438–439CrossRefGoogle Scholar
  35. RKI (Robert-Koch-Institut) (1999) Zur airport-malaria und baggage-malaria. Epidemiologisches Bulletin 37/99:274Google Scholar
  36. Schmidt G, Holy M, Schröder W (2008) Vector-associated diseases in the contect of climate change: analysis and evaluation of the differences in the potential spread of tertian malaria in the ecoregions of Lower Saxony. Ital J Public Health 5(4):245–252Google Scholar
  37. Schröder W, Schmidt G (2001) Defining ecoregions as framework for the assessment of ecological monitoring networks in Germany by means of GIS and classification and regression trees (CART). Gate to EHS 1(3):1–9Google Scholar
  38. Schröder W, Schmidt G (2008) Mapping the potential temperature-dependent tertian malaria transmission within the ecoregions of Lower Saxony (Germany). Int J Med Microbiol 298(S1):38–49CrossRefGoogle Scholar
  39. Small J, Goetz SJ, Hay SI (2003) Climatic suitability for malaria transmission in Africa 1911–1995. PNAS 100:15341–15345CrossRefGoogle Scholar
  40. Smith DL, McKenzie FE (2004) Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J 3:13CrossRefGoogle Scholar
  41. Snow RW, Ikoku A, Omumbo J, Ouma J (1990) The epidemiology, politics and control of malaria epidemics in Kenya: 1900–1998. Roll back malaria, resource network on epidemics. World Health Organisation, GenevaGoogle Scholar
  42. Swellengrebel NH, de Buck A, Kraan MH, van der Torren G (1935) Occurence in fresh and brackish water on the larvae of Anopheles maculipenni,s atroparvus and messeae in some coastal provinces of the Netherlands. Q Bull Health Organ League Nations V(3):280–294Google Scholar
  43. Tran A, Ponçon N, Toty C, Linard C, Guis H, Ferré JB, Lo Seen D, Roger F, de la Rocque S, Fontenille D, Baldet T (2008) Using remote sensing to map larval and adult populations of Anopheles hyrcanus (Diptera: Culicidae) potential malaria vector in Southern France. Int J Health Geogr 7:9CrossRefGoogle Scholar
  44. Tseng WC, Chen CC, Chang CC, Chu YH (2009) Estimating the economic impacts of climate change on infectious diseases: a case study on dengue fever in Taiwan. Clim Change 92:123–140CrossRefGoogle Scholar
  45. Weyer F (1940) Malaria und Malariaübertragung in Ostfriesland. Deutsche Tropenmedizinische Wochenschrift 44(1–2)Google Scholar
  46. WHO (World Health Organization) (2005) World malaria report 2005. World Health Organisation, GenevaGoogle Scholar
  47. Zhang Y, Peng B, Hiller JE (2008) Climate change and the transmission of vector-borne diseases: a review. Asia Pac J Publ Health 20(1):64–76Google Scholar
  48. Zoller T, Naucke TJ, May J, Hoffmeister B, Flick H, Williams CJ, Frank C, Bergmann F, Suttorp N, Mockenhaupt P (2009) Malaria transmission in non-endemic areas: case report, review of the literature and implications for public health management. Malar J 8:71CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marcel Holy
    • 1
  • Gunther Schmidt
    • 1
    Email author
  • Winfried Schröder
    • 1
  1. 1.Chair of Landscape EcologyUniversity of VechtaVechtaGermany

Personalised recommendations