Environmental Science and Pollution Research

, Volume 17, Issue 8, pp 1433–1447 | Cite as

Application of laser ablation ICP-MS and traditional techniques to the study of black crusts on building stones: a new methodological approach

  • Donatella Barca
  • Cristina Maria Belfiore
  • Gino Mirocle Crisci
  • Mauro Francesco La Russa
  • Antonino Pezzino
  • Silvestro Antonio Ruffolo
Research Article

Abstract

Introduction

In this work, we propose an innovative application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a methodological approach for the chemical characterisation of black crusts on stone monuments, associated with traditional micro-morphological (optical and scanning electron microscopy) and infrared spectroscopic techniques (FTIR).

Methods

This new approach was tested on black crusts developing on two marble substrates, one, the columns of the San Cosimato cloister in Rome, and the other, a sculpture representing an angel, located in Pessano con Bornago, a small industrial town near Milan.

Discussion

The main aim of this study was to develop and test the reliability of the LA-ICP-MS analytical method on black crusts and to explore the idea that trace element concentrations in black crusts can be applied to investigate their origin and the relations between concentrations of polluting elements in black crusts and environmental conditions.

Conclusion

The results obtained by applying traditional techniques find considerable support in the innovative method used here, which could determine the concentrations of a large number of trace elements (including heavy metals) in the black crusts examined, and thus could also be used as a reliable indicator of environmental pollution.

Keywords

LA-ICP-MS Black crusts Marble substrate Trace elements Environmental pollution 

Notes

Acknowledgments

We would express our gratitude to Alvin Young for his editorial guidance and to the anonymous reviewers for the constructive comments and suggestions provided that certainly contributed to increase the quality of the manuscript.

References

  1. Alessandrini G, Bugini R, Peruzzi RI (1988) Trattamenti superficiali effetuati nel passato. In: CNR (ed). La Certosa di Pavia: Passato e presente nella facciata della chiesa, Roma, pp 291–319Google Scholar
  2. Amoroso GG, Fassina V (1983) Stone Decay and conservation: Atmospheric pollution, cleaning, consolidation and protection, ElsevierGoogle Scholar
  3. Barba L, Blancas J, Manzanilla LR, Ortiz A, Barca D, Crisci GM, Miriello D, Pecci A (2009) Provenance of limestone used in Teotihuacan (Mexico) a methodological approach. Archaeometry 41:525–545CrossRefGoogle Scholar
  4. Barca D, De Francesco AM, Crisci GM, Tozzi C (2008) Provenance of obsidian artifacts from site of Colle Cera, Italy, by LA-ICP-MS method. Per Mineral 77:41–52Google Scholar
  5. Bityukova L (2006) Water Air Soil Pollut 172:239–271CrossRefGoogle Scholar
  6. Bonazza A, Sabbioni C, Ghedini N (2005) Quantitative data on carbon fractions in interpretation of black crusts and soiling on European built heritage. Atmos Environ 39:2607–2618CrossRefGoogle Scholar
  7. Camuffo D, Del Monte M, Sabbioni C (1983) Origin and growth mechanisms of the sulfated crusts on urban limestone. Water Air Soil Poll 19:351–359Google Scholar
  8. Cimino G, Pezzino A, Spadaro F (2000) Gli inquinanti microparticellari nelle croste nere dei monumenti del centro storico di Catania. Dati preliminari. 7° convegno “Le scienze della terra e l’archeometria” Taormina, Palermo, Catania 22–26 febbraio 2000Google Scholar
  9. Cipriani C, Franchi L (1958) Sulla presenza di whewellite fra le croste di alterazioni dei monumenti romani. Boll Serv Geol 79:555–564Google Scholar
  10. Crisci GM, La Russa MF, Malagodi M, Mazzoleni P, Pezzino A, Ruffolo SA (2009) Study of alteration and degradation products of a Roman marble sarcophagus located in the medieval cloister of the old St Cosimato’s Convent, now the new “Regina Margherita Hospital” (Rome), Conservation Science in cultural heritage, Quaderni di Scienze della ConservazioneGoogle Scholar
  11. Del Monte M, Sabbioni C, Vittori O (1981) Airborne carbon particles and marble deterioration. Atmos Environ 15:645–652CrossRefGoogle Scholar
  12. Del Monte M, Ausset P, Forti P, Lèfevre RA, Tolomelli M (2001) Air pollution records on selenite in the urban environment. Atmos Environ 35:3885–3896CrossRefGoogle Scholar
  13. Esbert RM, Diaz-Pache F, Grossi CM, Alonso FJ, Ordaz J (2001) Airborne particulate matter around the Cathedral of Burgos (Castilla y Leon, Spain). Atmos Environ 35:441–452CrossRefGoogle Scholar
  14. Fallon SJ, White JC, McCulloch MT (2002) Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea. Geochim Cosmochim Acta 66:45–62CrossRefGoogle Scholar
  15. Fobe B, Vleugels GJ, Roekens EJ, Hermosin B, Ortega Calvo JJ, Del Junco AS, Vangrieken R (1995) Organic and Inorganic Compounds in Limestone Weathering Crusts from Cathedrals in Southern and Western Europe. Environ Sci Technol 29:1691–1701Google Scholar
  16. Fryer BJ, Jackson SE, Longerich HP (1995) The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM-ICP-MS) in the Earth Sciences. Can Mineral 33:303–312Google Scholar
  17. Gao S, Liu X, Yuan H, Hattendorf B, Gunther D, Chen L, Hu S (2002) Determination of forty-two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostandard Newslett 26(2):181–196CrossRefGoogle Scholar
  18. Gratuze B (1999) Obsidian characterization by Laser Ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the Near East: sources and distribution of obsidian within the Aegean and Anatolia. J Archaeol Sci 26:869–881CrossRefGoogle Scholar
  19. Gunther D, Heinrich CA (1999) Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium–argon mixtures as aerosol carrier. J Anal At Spectrom 14:1363–1368CrossRefGoogle Scholar
  20. Kukkonen J, Pohjola M, Sokhi RS, Luhana L, Kitwiroon N, Fragkou L, Rantamaki M, Berge E, Odegaard V, Slørdal LH, Denby B, Finardi S (2005) Analysis and evaluation of selected local-scale PM10 air pollution episodes in four European cities: Helsinki, London, Milan and Oslo. Atmos Environ 39:2759–2773CrossRefGoogle Scholar
  21. La Russa MF, Ruffolo SA, Barone G, Crisci GM, Mazzoleni P, Pezzino A (2009) The use of FTIR and micro-FTIR spectroscopy: an example of application to cultural heritage. Int J Spec. doi: 10.1155/2009/893528 Google Scholar
  22. Lazareth CE, Vander Putten E, André L, Dehairs F (2003) High-resolution trace element profiles in shells of the mangrove bivalve Isognomon ephippium: a record of environmental spatio-temporal variations? Estuarine. Coast Shelf Sci 57(5-6):1103–1114CrossRefGoogle Scholar
  23. Maravelaki-Kalaitzaki P (2005) Black crusts and patinas on Pentelic marble from the Parthenonand Erechtheum (Acropolis, Athens): characterization and origin. Anal Chim Acta 532:187–198CrossRefGoogle Scholar
  24. Maravelaki-Kalaitzali P, Anglos D, Kilikouglou V, Zafiropulos V (2001) Compositional characterization of encrustation on marble with laser induced breakdown spectroscopy. Spectrochim Acta Part B 56:887–903Google Scholar
  25. Maravelaki-Kalaitzaki P, Biscontin G (1999) Origin, characteristics and morphology of the weathering crusts on Istria stone in Venice Atmos. Environment 33:1699–1709Google Scholar
  26. Maravelaki P, Zafiropulos V, Kilikoglou V, Kalaitzaki M, Fotakis C (1997) Laser-induced breakdown spectroscopy as a diagnostic technique for the laser cleaning of marble. Spectrochim Acta Part B 52:41–53CrossRefGoogle Scholar
  27. Marcazzan GM, Ceriani M, Valli G, Vecchi R (2003) Source apportionment of PM10 and PM2.5 in Milan (Italy) using receptor modeling. Sci Total Environ 317:137–147CrossRefGoogle Scholar
  28. Marinoni N, Pellizon Birelli M, Rostagno C, Pavese A (2003) The effects of atmospheric multipollutants on modern concrete. Atmos Environ 37:4701–4712CrossRefGoogle Scholar
  29. Metallo MC, Poli AA, Diana M, Persia F, Cirillo M (1995) Air pollution loads on historical monuments: an air quality model application to the marble Arch of Titus in Rome. Sci Total Environ 171:163–172. doi: 10.1016/0048-9697(95)04690-0 CrossRefGoogle Scholar
  30. Moropoulou A, Bisbikou K, Torfs K, Van Grieken R, Zezza F, Macri F (1998) Origin and growth of weathering crusts on ancient marbles in industrial atmosphere. Atmos Environ 32(6):967–982CrossRefGoogle Scholar
  31. Oka T, Koide T, Sonoda T (1985) Estimation of IR spectrophotometer of the COD to COM ratio. J Urol 134:813–817Google Scholar
  32. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandard Newslett 21:115–144CrossRefGoogle Scholar
  33. Perrino C, Canepari S, Cardarelli E, Catrambone M, Sargolini T (2008a) Inorganic constituents of urban air pollution in the Lazio region (Central Italy). Environ Monit Assess 136:69–86CrossRefGoogle Scholar
  34. Perrino C, Catrambone M, Pietrodangelo A (2008b) Influence of atmospheric stability on the mass concentration and chemical composition of atmospheric particles: a case study in Rome. Italy Environ Int 34:621–628Google Scholar
  35. Rampazzi L, Andreotti A, Bonaduce I, Colombini MP, Colombo C, Toniolo L (2005) Analytical investigation of calcium oxalate films on marble monuments. Talanta 63:966–977Google Scholar
  36. Rodriguez-Navarro C, Sebastian E (1996) Role of particulate matter from vehicle exhaust on porous building stones (limestone) sulfation. Sci Total Environ 187:79–91CrossRefGoogle Scholar
  37. Sinclair DJ (2005) Non-river flood barium signals in the skeletons of corals from coastal Queensland, Australia. Earth Planet Sci Lett 237(3-4):354–369CrossRefGoogle Scholar
  38. Turkington AV, Smith BJ, Whalley WB (1997) Short-term stone surface modification; an example from Venice. Proceedings of the 4th international symposium on the conservation of monuments in the Mediterranean basin. Technical chamber of Greece. Rhodes 1:359–372Google Scholar
  39. Valls del Barrio S, Garcia Valles M, Pradell T, Vendrell-Saz M (2002) The red–orange patina developed on a monumental dolostone. Eng Geol 63:31–38CrossRefGoogle Scholar
  40. Vander Putten E, Dehairs F, André L, Baeyens W (1999) Quantitative in situ microanalysis of minor and trace elements in biogenic calcite using infrared laser ablation—inductively coupled plasma mass spectrometry: a critical evaluation. Anal Chim Acta 378:261–272CrossRefGoogle Scholar
  41. Vazquez-Calvo C, Alvarez de Buergo M, Fort R, Varas MJ (2007) Characterization of patinas by means of microscopic techniques. Mater Charact 58:1119–1132CrossRefGoogle Scholar
  42. Wyndham T, McCulloch M, Fallon S, Alibert C (2004) High-resolution coral records of rare earth elements in coastal seawater: biogeochemical cycling and a new environmental proxy. Geochim Cosmochim Acta 68(9):2067–2080CrossRefGoogle Scholar
  43. Zappia G, Sabbioni C, Riontino C, Gobbi G, Favoni O (1998) Exposure tests of building materials in urban atmosphere. Sci Total Environ 224:235–244CrossRefGoogle Scholar
  44. Zou LY, Hooper MA (1997) Size-resolved airborne particles and their morphology in central Jakarta. Atmos Environ 31:1167–1172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Donatella Barca
    • 1
  • Cristina Maria Belfiore
    • 2
  • Gino Mirocle Crisci
    • 1
  • Mauro Francesco La Russa
    • 1
  • Antonino Pezzino
    • 2
  • Silvestro Antonio Ruffolo
    • 1
  1. 1.Dipartimento di Scienze della TerraUniversità della CalabriaArcavacata di Rende (CS)Italy
  2. 2.Dipartimento di Scienze GeologicheUniversità di CataniaCataniaItaly

Personalised recommendations