Environmental Science and Pollution Research

, Volume 17, Issue 7, pp 1355–1361

Removal of 4-chlorobenzoic acid from spiked hydroponic solution by willow trees (Salix viminalis)

  • Kamila Deavers
  • Tomas Macek
  • Ulrich G. Karlson
  • Stefan Trapp
Research Article

Abstract

Background

Chlorobenzoic acids (CBA) are intermediate products of the aerobic microbial degradation of PCB and several pesticides. This study explores the feasibility of using basket willows, Salix viminalis, to remove 4-CBA from polluted sites, which also might stimulate PCB degradation.

Methods

The removal of 4-CBA by willow trees was investigated with intact, septic willow trees growing in hydroponic solution and with sterile cell suspensions at concentrations of 5 mg/L and 50 mg/L 4-CBA. Nutrient solutions with different levels of ammonium and nitrate were prepared to achieve different pH levels. The concentration of 4-CBA was tracked over time and quantified by HPLC.

Results and discussion

At the low level of 4-CBA (5 mg/L), willows removed 70% (pH 4.2) to 90% (pH 6.8), while 48% (pH 4.2) to 52% (pH 6.8) of the water was transpired. At the high 4-CBA level (50 mg/L), the pH varied between 4.4 and 4.6, and 10% to 30% of 4-CBA was removed, but only 5% to 9% of the water. In sterile cell suspensions, removal of 4-CBA by fresh biomass was much higher than removal by dead biomass.

Conclusions

The results indicate that 4-CBA is toxic to willow trees at 50 mg/L. The removal of 4-CBA from solution is by both passive processes (uptake with water, sorption to plant tissue) and metabolic processes of the plants.

Recommendations and outlook

Plants, such as willow trees, might assist in the degradation of PCB and their degradation products CBA.

Keywords

Chlorobenzoic acid Degradation Metabolism PCB Plants Willows 

References

  1. Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20:253–266CrossRefGoogle Scholar
  2. Aylward GH, Findlay TJV (1981) Chemical data (Datensammlung Chemie), 2nd edn. Verlag Chemie, WeinheimGoogle Scholar
  3. Baggi G, Zanagarossi M (1995) Inhibition by meta-substituted dichlorobenzoates in Alcaligenes denitrificans which grows on 4-chlorobenzoate. Ann Microbiol Enzymol 45:185–189Google Scholar
  4. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588CrossRefGoogle Scholar
  5. Bartels I, Knackmuss H-J, Reineke W (1984) Suicide inactivation of catechol 2, 3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505Google Scholar
  6. Blasko R, Wittich RM, Mallavarapu M, Timmis KN, Pieper DH (1995) From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem 270:29229–29235CrossRefGoogle Scholar
  7. Brazil GM, Kenefick L, Callanan M, Haro A, De Lorenzo V, Dowling DN, O’Gara F (1995) Construction of a rhizosphere pseudomonad with potencial to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61:1946–1952Google Scholar
  8. Briggs GG, Rigitano RLO, Bromilow RH (1987) Physico-chemical factors affecting uptake by roots and translocation to shoots of weak acids in barley. Pestic Sci 19:101–112CrossRefGoogle Scholar
  9. Bromilow RH, Chamberlain K (1995) Principles governing uptake and transport of chemicals. In: Trapp S, Mc Farlane JC (eds) Plant contamination—Modeling and simulation of organic chemical processes. CRC Press., Inc. Lewis publishers, USA, pp 36–67Google Scholar
  10. Ciucani G, Mosbæk H, Trapp S (2004) Uptake of tributyltin into willow trees. Environ Sci Pollut Res 11:267–272CrossRefGoogle Scholar
  11. Crowley DE, Brennerova MV, Irwin C, Brenner V, Focht DD (1996) Rhizosphere effect on biodegradation of 2,5-dichlorobenzoate by a bioluminescent strain of root-colonizing Pseudomonas fluorescens. FEMS Microbiol Ecol 20:79–89CrossRefGoogle Scholar
  12. Dionysiou DD, Suidan MT, Bekou E, Baudin I, Laine J-M (2000) Effect of ionic strength and hydrogen peroxide on photocatalic degradation of 4-chlorobenzoic acid in water. Appl Catal B: Environ 26:153–171CrossRefGoogle Scholar
  13. Ellenberg H (1979) Zeigerwerte der Gefäβpflanzen Mitteleuropas (Indicator values of Central European vascular plants). Erich Goltze KG, GöttingenGoogle Scholar
  14. Ferro AM, Sims RC, Bugbee B (1994) Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil. J Environ Qual 23:272–279CrossRefGoogle Scholar
  15. Focht DD (1995) Strategies for the improvement of aerobic metabolism of chlorinated biphenyls. Curr Opin Biotechnol 6:341–346CrossRefGoogle Scholar
  16. Frohne D, Jensen U (1985) Systematik des Pflanzenreiches unter besonderer berücksichtigung chemischer Merkmale und pflanzlicher Drogen, 3rd edn. Gustav Fischer, StuttgartGoogle Scholar
  17. Haby PA, Crowley DE (1996) Biodegradation of 3-chlorobenzoate as affected by rhizodeposition and selected carbon substrates. J Environ Qual 25:304–310CrossRefGoogle Scholar
  18. Kleier DA (1988) Phloem mobility of xenobiotics. Plant Physiol 86:803–810CrossRefGoogle Scholar
  19. Larsen M, Trapp S, Pirandello A (2004) Removal of cyanide by woody plants. Chemosphere 54:325–333CrossRefGoogle Scholar
  20. Larsen M, Ucisik A, Trapp S (2005) Uptake, metabolism, accumulation and toxicity of cyanide in willow trees. Environ Sci Technol 39:2135–2142CrossRefGoogle Scholar
  21. Mackova M, Barriault D, Francova K, Sylvestre M, Möder M, Vrchotova B, Lovecka P, Najmanova J, Demnerova K, Novakova M, Rezek J, Macek T (2006) Phytoremediation of polychlorinated biphenyls. In: Mackova M, Dowling DN, Macek T (eds) Phytoremediation rhizoremediation. Springer, Dordrecht, pp 143–169CrossRefGoogle Scholar
  22. Magara Y, Aizawa T, Matumote N, Souna F (1994) Degradation of pesticides by chlorination during water purification. Wat Sci Technol 30:119–128Google Scholar
  23. Marks TS, Smith ARW, Quirk AV (1984) Degradation of 4-chlorobenzoic acid by Arthrobacter sp. Appl Environ Microbiol 48:1020–1025Google Scholar
  24. Sandman ER, Loos MA (1984) Enumeration of 2,4-D degrading microorganisms in soil and crop plant rhizospheres using indicator media: high population associated with sugarcane (Saccharum officinarum). Chemosphere 13:1073–1084CrossRefGoogle Scholar
  25. Siciliano SD, Germida JJ (1999) Enhanced phytoremediation of chlorobenzoates in rhizosphere soil. Soil Biol Biochem 31:299–305CrossRefGoogle Scholar
  26. ISO International Oraganization for Standardization (1997) Water quality—fresh water algal growth test with Scenedesmus subspicatus and Raphidocelis subcapitata. International Organization for Standardization, Genova, ISO Standards 8692Google Scholar
  27. Stratford J, Wright MA, Reineke W, Mokross H, Havel J, Knowles CJ, Robinson GK (1996) Influence of chlorobenzoates on utilization of chlorobiphenyls and chlorobenzoate mixtures by chlorobiphenyl/chlorobenzoate-mineralising hybrid bacteria strains. Arch Microbiol 165:213–218CrossRefGoogle Scholar
  28. Trapp S (2000) Modeling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag Sci 56:767–778CrossRefGoogle Scholar
  29. Trapp S (2002) Dynamic root uptake model for neutral lipophilic organics. Environ Toxicol Chem 21:203–206CrossRefGoogle Scholar
  30. Trapp S (2004) Plant uptake and transport models for neutral and ionic chemicals. Environ Sci Pollut Res 11:33–39CrossRefGoogle Scholar
  31. Trapp S, Zambrano KC, Kusk KO, Karlson U (2000) A phytotoxicity test using transpiration of willows. Arch Environ Contam Toxicol 39:154–160CrossRefGoogle Scholar
  32. Trapp S, Miglioranza KSB, Mosbæk H (2001) Sorption of lipophilic organic compounds to wood and implications for their environmental fate. Environ Sci Technol 35:1561–1566CrossRefGoogle Scholar
  33. Trapp S, Ciucani G, Sismilich M (2004) Toxicity of tributyltin to willow trees. Environ Sci Pollut Res 11:327–330CrossRefGoogle Scholar
  34. Trapp S, Ucisik AS, DelChicca Romano P, Larsen M (2007) The role of plants and bacteria in phytoremediation—kinetic aspects. In: Heipieper HJ (ed) Bioremediation of soils contaminated with aromatic compounds. NATO science series, IV. Earth and environmental sciences—vol. 76. Springer, Dordrecht, pp 41–49CrossRefGoogle Scholar
  35. Ucisik AS, Trapp S (2006) Uptake, removal, accumulation, and phytotoxicity of phenol in willow trees (Salix viminalis). Environ Toxicol Chem 25:2455–2460CrossRefGoogle Scholar
  36. Ucisik AS, Trapp S, Kusk KO (2007) Uptake, accumulation, phytotoxicity and removal of 2, 4-dichlorophenol in willow trees. Environ Toxicol Chem 26:1165–1171CrossRefGoogle Scholar
  37. UNEP United Nations Environmental Program (2007) Stockholm convention on persistent organic pollutants (POPs). Available: http://www.pops.int/ [accessed 15 Jan 2010]
  38. Villacieros M, Whelan C, Mackova M, Molgaard J, Sánches-Contreras M, Lloret J, de Cárcer DA, Oruezábal RI, Balaños L, Macek T, Karlson U, Dowling DN, Martín M, Rivilla R (2004) Polychlorinated biphenyl rhizoremedation by Pseudomonas fluorescens F113 derovates, using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol 71:2687–2694CrossRefGoogle Scholar
  39. Yu XZ, Trapp S, Zhou PH, Wang C, Zhou XS (2004) Metabolism of cyanide by Chinese vegetation. Chemosphere 56:121–126CrossRefGoogle Scholar
  40. Yu XZ, Trapp S, Zhou P (2005a) Phytotoxicity of cyanide to weeping willow trees. Environ Sci Pollut Res 12:109–113CrossRefGoogle Scholar
  41. Yu XZ, Zhou PH, Zhou XS, Liu YD (2005b) Cyanide removal by Chinese vegetation. Quantification of the Michaelis-Menten kinetics. Environ Sci Pollut Res 12:227–232CrossRefGoogle Scholar
  42. Yu XZ, Trapp S, Zhou P, Peng X, Cao X (2006) Response of weeping willows to linear alkylbenzene sulfonate. Chemosphere 64:43–48CrossRefGoogle Scholar
  43. Zaitsev GM, Karasevich YN (1981) Utilization of 4-chlorobenzoic acid by Arthrobacteria globiformis. Mikrobiologiya 50:423–428Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Kamila Deavers
    • 1
    • 2
  • Tomas Macek
    • 2
  • Ulrich G. Karlson
    • 3
  • Stefan Trapp
    • 1
  1. 1.Department of Environmental EngineeringTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.Institute of Organic Chemistry and BiochemistryPragueCzech Republic
  3. 3.Department of Environmental Chemistry and Microbiology, National Environmental Research InstituteUniversity of AarhusRoskildeDenmark

Personalised recommendations