Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety

  • Michel Mench
  • Jean-Paul Schwitzguébel
  • Peter Schroeder
  • Valérie Bert
  • Stanislaw Gawronski
  • Satish Gupta
COST ACTION 859 • PHYTOREMEDIATION • REVIEW ARTICLE

Abstract

Purpose

The term “phytotechnologies” refers to the application of science and engineering to provide solutions involving plants, including phytoremediation options using plants and associated microbes to remediate environmental compartments contaminated by trace elements (TE) and organic xenobiotics (OX). An extended knowledge of the uptake, translocation, storage, and detoxification mechanisms in plants, of the interactions with microorganisms, and of the use of “omic” technologies (functional genomics, proteomics, and metabolomics), combined with genetic analysis and plant improvement, is essential to understand the fate of contaminants in plants and food, nonfood and technical crops. The integration of physicochemical and biological understanding allows the optimization of these properties of plants, making phytotechnologies more economically and socially attractive, decreasing the level and transfer of contaminants along the food chain and augmenting the content of essential minerals in food crops. This review will disseminate experience gained between 2004 and 2009 by three working groups of COST Action 859 on the uptake, detoxification, and sequestration of pollutants by plants and consequences for food safety. Gaps between scientific approaches and lack of understanding are examined to suggest further research and to clarify the current state-of-the-art for potential end-users of such green options.

Conclusion and perspectives

Phytotechnologies potentially offer efficient and environmentally friendly solutions for cleanup of contaminated soil and water, improvement of food safety, carbon sequestration, and development of renewable energy sources, all of which contribute to sustainable land use management. Information has been gained at more realistic exposure levels mainly on Cd, Zn, Ni, As, polycyclic aromatic hydrocarbons, and herbicides with less on other contaminants. A main goal is a better understanding, at the physiological, biochemical, and molecular levels, of mechanisms and their regulation related to uptake–exclusion, apoplastic barriers, xylem loading, efflux–influx of contaminants, root-to-shoot transfer, concentration and chemical speciation in xylem/phloem, storage, detoxification, and stress tolerance for plants and associated microbes exposed to contaminants (TE and OX). All remain insufficiently understood especially in the case of multiple-element and mixed-mode pollution. Research must extend from model species to plants of economic importance and include interactions between plants and microorganisms. It remains a major challenge to create, develop, and scale up phytotechnologies to market level and to successfully deploy these to ameliorate the environment and human health.

Keywords

Contaminated soil Contaminated water Food safety Genes Microorganisms Organic xenobiotics Phytoremediation Plant species Root uptake Tolerance Trace elements 

Abbreviations

ABC transporter

ATP-binding cassette transporters

ATM

the ABC transporters of the mitochondria

ATP

adenosine triphosphate

APX

ascorbate peroxidase

AsA

(reduced) ascorbate

ASR

As(V) reductase

CAT

catalase

CDF

cation diffusion facilitators

DHAR

dehydroascorbate reductase

CYPs

cytochrome P450

EB

endophytic bacteria

GAPDH

glyceraldehyde 3-phosphate dehydrogenase

GPx

glutathione peroxidase

GR

glutathione reductase

GSH

(reduced) glutathione

GST

glutathione S-transferase

GT

glutathione transferase

HMA

heavy metal-transporting P1B-ATPases

IAA

indole-3-acetic acid

MT

metallothionein(s)

MRP

multidrug resistance-associated proteins

MTP

metal tolerance proteins

Nramp

natural resistance-associated macrophage protein

“Omic”

technologies including genomics, transcriptomics (gene expression profiling), proteomics, and metabolomics

p,p-DDE

p,p′-dichlorodiphenyldichloroethylene

PAH

polycyclic aromatic hydrocarbons

PC

phytochelatins

PCS

phytochelatin synthase

PDR

the pleiotropic drug resistance transporters

POD

peroxidases

QTL

quantitative trait loci

ROS

reactive oxygen species

SOD

superoxide dismutase

TNT

trinitrotoluene

ZIP

Zn transporter protein(s)

ZIF1

zinc finger interacting protein

References

  1. Aajoud A, Raveton M, Aouadi H, Tissut M, Ravanel P (2006) Uptake and xylem transport of fipronil in sunflower. J Agric Food Chem 54:5055–5060CrossRefGoogle Scholar
  2. Aarts MGM, Ghandilyan A, van de Mortel JE, Talukdar S, Wu J, Du J, Schat H, Ling HQ, Koornneef M (2007) Identification of genes for Zn biofortification: genetic and molecular analysis of mineral accumulation in Arabidopsis thaliana. In: Golan A (ed) Nutrient biofortification and exclusion of pollutants in food plants, COST Action 859. Ben-Gurion University of the Negev, Sede-Boqer, p 59Google Scholar
  3. Alvarenga P, Goncalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2008) Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Sci Total Environ 406:43–56CrossRefGoogle Scholar
  4. Antosiewicz DM, Escude-Duran C, Wierzbowska E, Sklodowska A (2008) Indigenous plant species with the potential for the phytoremediation of arsenic and metals contaminated soil. Water Air Soil Pollut 193:197–210CrossRefGoogle Scholar
  5. Arnetoli M, Vooijs R, ten Bookum W, Galardi F, Gonnelli C, Gabbrielli R, Schat H, Verkleij JAC (2008) Arsenate tolerance in Silene paradoxa does not rely on phytochelatin-dependent sequestration. Environ Pollut 152:585–591CrossRefGoogle Scholar
  6. Assunção AGL, Talukdar S, Aarts MGM (2008) Identification of Arabidopsis mutants with an altered response to zinc deficiency. In: Furini A et al (eds) Genes and proteins involved in limiting steps of phytoextraction and degradation of pollutants, COST Action 859. University of Verona, Verona, pp 3–4Google Scholar
  7. Aubert S, Schwitzguébel JP (2004) Screening of plant species for the phytotreatment of wastewater containing sulphonated anthraquinones. Water Res 38:3569–3575CrossRefGoogle Scholar
  8. Aulen M, Bes C, Mench M, Gasté H, Taberly J, Laporte-Cru J, Touzard B (2007) Plant communities at a wood preservative treatment site, and Cu tolerance patterns of plant species. In: Zhu Y et al (eds) Biogeochemistry of trace elements: environmental protection, remediation and human health. Tsinghua University Press, Beijing, pp 152–154Google Scholar
  9. Azaizeh H, Salhani N, Sebesvari Z, Shardendu S, Emons H (2006) Phytoremediation of selenium using subsurface-flow constructed wetland. Int J Phytoremediation 8:187–198CrossRefGoogle Scholar
  10. Baltrenaite E, Butkus D (2007) Modelling of Cu, Ni, Zn, Mn and Pb transport from soil to seedlings of coniferous and leafy trees. J Environ Eng Landsc Manag 15:200–207Google Scholar
  11. Banasova V, Horak O, Ciamporova M, Nadubinska M, Lichtscheidl I (2006) The vegetation of metalliferous and non-metalliferous grasslands in two former mine regions in Central Slovakia. Biologia 61:433–439CrossRefGoogle Scholar
  12. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588CrossRefGoogle Scholar
  13. Barac T, Weyens N, Oeyen L, Taghavi S, van der Lelie D, Dubin D, Spliet M, Vangronsveld J (2009) Field note: hydraulic containment of a BTEX plume using poplar trees. Int J Phytoremediation 11:416–424CrossRefGoogle Scholar
  14. Barbafieri M, Tassi E, Hasko A, Harizai F, Shehu J, Kornaros M (2007) Preliminary studies of a Hg contaminated area: metal availability and uptake by spontaneous plant species. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 100–101Google Scholar
  15. Bartha B, Erdei L (2007) Effects of Cu2+ and Cd2+ on macro- and microelement composition and on the antioxidant defense system in Brassica juncea L. Czern. In: Golan A (ed) Nutrient biofortification and exclusion of pollutants in food plants, COST Action 859. Ben-Gurion University of the Negev, Sede-Boqer, p 12Google Scholar
  16. Becerra-Castro C, Kidd PS, Prieto-Fernández A, Weyens N, Vangronsveld J (2008) Plant-associated bacteria of Cytisus striatus growing on hexachlorocyclohexane-contaminated soils. In: Lišková D, Lux A, Martinka M (eds) Contaminants and nutrients availability, accumulation/exclusion and plant–microbia–soil interactions, COST Action 859. Mgr. P Cibulka, Copycentrum PACI, Bratislava, p 30Google Scholar
  17. Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N (2004) A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Lett 569:140–148CrossRefGoogle Scholar
  18. Bes C, Mench M (2008) Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilisation. Environ Pollut 156:1128–1138CrossRefGoogle Scholar
  19. Bes C, Mench M, Guinberteau J, Garcia San Martin S, Monmarson M (2007) Sustainable management of a Cu-contaminated soil by phytostabilisation: effect of ectomycorrhization on the growth of 3 Salicacea species in field plots. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 18–19Google Scholar
  20. Bes C, Bedon F, Mench M, Lalanne C, Plomion C (2008) Soluble proteins involved in copper tolerance in metallicolous Agrostis capillaris. In: Furini A et al (eds) Genes and proteins involved in limiting steps of phytoextraction and degradation of pollutants, COST Action 859. University of Verona, Verona, pp 21–22Google Scholar
  21. Bidar G, Pruvot C, Garcon G, Verdin A, Shirali P, Douay F (2009) Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Environ Sci Pollut Res 16:42–53CrossRefGoogle Scholar
  22. Bjelková M, Griga M, Vetrovcová M (2007) The effect of sewage sludge-amended soil on Cd, Pb and Zn accumulation by flax/linseed plants (Linum usitatissimum L.). In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 131–133Google Scholar
  23. Bleeker PM, Hakvoort HWJ, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929CrossRefGoogle Scholar
  24. Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286CrossRefGoogle Scholar
  25. Bridgeman TG, Darvell LI, Jones JM, Williams PT, Fahmi R, Bridgwater AV, Barraclough T, Shield I, Yates N, Thain SC, Donnison IS (2007) Influence of particle size on the analytical and chemical properties of two energy crops. Fuel 86:60–72CrossRefGoogle Scholar
  26. Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17CrossRefGoogle Scholar
  27. Campos VM, Merino I, Casado R, Pacios LF, Gomez L (2008) Phytoremediation of organic pollutants. Spanish J Agr Res 6:38–47Google Scholar
  28. Carias CC, Novais JM, Martins-Dias S (2008) Are Phragmites australis enzymes involved in the degradation of the textile azo dye acid orange 7? Bioresour Technol 99:243–251CrossRefGoogle Scholar
  29. Carrasco S, Grebler O, Vázquez S, Sierra MJ, Carpena RO, Millán R (2007) Mercury accumulation in Cistus ladanifer under the influence of mining activities in Almadén area (Spain). In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 197–199Google Scholar
  30. Chaney RL, Chen KY, Li YM, Angle JS, Baker AJM (2008) Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil 311:131–140CrossRefGoogle Scholar
  31. Chapman MM, Balasubramaniyam A, Rees D, Harvey PJ (2008) Impact on the root morphology and root cell ultrastructure of grasses grown in petroleum crude oil contaminated sand: evidence of stress. In: Lišková D, Lux A, Martinka M (eds) Contaminants and nutrients availability, accumulation/exclusion and plant–microbia–soil interactions, COST Action 859. Mgr. P Cibulka, Copycentrum PACI, Bratislava, pp 26–27Google Scholar
  32. Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48CrossRefGoogle Scholar
  33. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719CrossRefGoogle Scholar
  34. Cohu CM, Pilon M (2007) Regulation of superoxide dismutase expression by copper availability. Plant Physiol 129:747–755CrossRefGoogle Scholar
  35. Conesa HM, Faz A, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena–La Union mining district (SE Spain). Sci Total Environ 366:1–11CrossRefGoogle Scholar
  36. Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065CrossRefGoogle Scholar
  37. Davies K, Pedro IS, Ferreira RA, Freire FG, Novais JM, Martins-Dias S (2008) Constructed wetland treatment system in textile industry and sustainable development. Water Sci Technol 58:2017–2023CrossRefGoogle Scholar
  38. De Angeli A, Thomine S, Frachisse JM, Ephritikhine G, Gambale F, Barbier-Brygoo H (2007) Anion channels and transporters in plant cell membranes. FEBS Lett 581:2367–2374CrossRefGoogle Scholar
  39. De Haro-Bravo MI, del Rio-Celestino M, de Haro-Bailon A (2008) Uptake and accumulation of lead by broccoli plants grown in contaminated soils. Fresenius Environ Bull 17:1640–1643Google Scholar
  40. Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84CrossRefGoogle Scholar
  41. Dettenmaier EM, Doucette WJ, Bugbee B (2009) Chemical hydrophobicity and uptake by plant roots. Environ Sci Technol 43:324–329CrossRefGoogle Scholar
  42. Devez A, Achterberg E, Gledhill M (2009) Metal ion-binding properties of phytochelatins and related ligands. Metal Ions in Life Sciences 5:441–481CrossRefGoogle Scholar
  43. Dickinson NM, Baker AJM, Doronila A, Laidlaw S, Reeves R (2009) Phytoremediation of inorganics: realism and synergies. Int J Phytoremediation 11:97–114CrossRefGoogle Scholar
  44. Díez Lázaro J, Kidd PS, Monterroso C (2006a) A phytogeochemical study of the Tras-os-Montes region (NE Portugal): possible species for plant-based soil remediation technologies. Sci Total Environ 354:265–277CrossRefGoogle Scholar
  45. Díez Lázaro J, Kidd PS, Monterroso C (2006b) Evaluation of the phytoextraction potential of Cistus ladanifer in Zn contaminated soils. In: Kidd P (ed) Root to shoot translocation of pollutants and nutrients, COST Action 859. Instituto de Investigaciones Agrobiológicas de Galicia (IIAGCSIC) and the Universidade de Santiago de Compostela (USC), Santiago de Compostela, p 13Google Scholar
  46. Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60:1207–1218CrossRefGoogle Scholar
  47. Do Nascimento CW, Xing BS (2006) Phytoextraction: a review on enhanced metal availability and plant accumulation. Sci Agric 63:299–311Google Scholar
  48. Dominguez-Solis JR, Lopez-Martin MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2:469–476CrossRefGoogle Scholar
  49. Dos Santos Utmazian MN, Wieshammer G, Vega R, Wenzel WW (2007) Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ Pollut 148:155–165CrossRefGoogle Scholar
  50. Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333CrossRefGoogle Scholar
  51. EEA (European Environment Agency) (2007) Progress in management of contaminated sites, CSI 015, DK-1050 Copenhagen K, Denmark. Available at http://themes.eea.europa.eu/IMS/IMS/ISpecs/ISpecification20041007131746/IAssessment1152619898983/view_content
  52. Erdei L, Dergez A, Bartha B, Vashegyi A, Pataki S, Mécs I (2007) Root development and growth of Salix viminalis cuttings in the presence of chromium, lead and zinc as affected by bacterial consortia isolated from the rhizosphere. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 145–146Google Scholar
  53. Farwell AJ, Vesely S, Nero V, Rodriguez H, Shah S, Dixon DG, Glick BR (2006) The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil 288:309–318CrossRefGoogle Scholar
  54. Fischerová Z, Tlustoš P, Száková J, Šichorova K (2006) A comparison of phytoremediation capability of selected plant species for given trace elements. Environ Pollut 144:93–100CrossRefGoogle Scholar
  55. Franzle S, Markert B, Wunschmann S (2007) Dynamics of trace metals in organisms and ecosystems: prediction of metal bioconcentration in different organisms and estimation of exposure risks. Environ Pollut 150:23–33CrossRefGoogle Scholar
  56. Frova C, Sala T, Sari Gorla M (2007) Identification and characterisation of cadmium responsive genes in rice. In: Golan A (ed) Nutrient biofortification and exclusion of pollutants in food plants, COST Action 859. Ben-Gurion University of the Negev, Sede-Boqer, p 15Google Scholar
  57. Furini A, Farinati S, Dal Corso G (2007) The Brassica juncea factor BjCdR15 enhances cadmium tolerance and accumulation in transgenic Arabidopsis and tobacco. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 54–55Google Scholar
  58. Gawronski SW, Gawronska H (2007) Phytoremediation—some case studies conducted at WAU. In: Marmiroli N, Samotokin B, Marmiroli M (eds) Advanced science and technology for biological decontamination of sites affected by chemical and radiological nuclear agents. NATO Sci Ser IV Earth Environ Sci 75:159–175Google Scholar
  59. Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30CrossRefGoogle Scholar
  60. Germaine K, Keogh E, Borremans B, van der Lelie D, Barac T, Oeyen L, Vangronsveld J, Porteous Moore F, Moore E, Campbell C, Ryan D, Dowling D (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118CrossRefGoogle Scholar
  61. Gershater MC, Cummins I, Edwards R (2007) Role of a carboxylesterase in herbicide bioactivation in Arabidopsis thaliana. J Biol Chem 282:21460–21466CrossRefGoogle Scholar
  62. Ginocchio R, Carvallo G, Toro I, Bustamante E, Silva Y, Sepúlveda N (2004) Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile. Environ Pollut 127:343–352CrossRefGoogle Scholar
  63. Gisbert C, Ros R, De Haro A, Walker DJ, Bernal MP, Serrano R, Navarro-Avino J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445CrossRefGoogle Scholar
  64. Gonzalez I, Muena V, Cisternas M, Neaman A (2008) Copper accumulation in a plant community affected by mining contamination in Puchuncavi valley, central Chile. Rev Chil Hist Nat 81:279–291Google Scholar
  65. Greger M, Landberg T (2008) Role of rhizosphere mechanisms in Cd uptake by various wheat cultivars. Plant Soil 312:195–205CrossRefGoogle Scholar
  66. Griessler BT, Zupancic JM, Razinger J, Zrimec A, Zupan M (2007) Phytoremediation of tannery landfill site. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 121–122Google Scholar
  67. Grispen VMJ, Nelissen HJM, Verkleij JAC (2006) Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environ Pollut 144:77–83CrossRefGoogle Scholar
  68. Grispen VMJ, Irtelli B, Hakvoort H, Bliek T, Navari-Izzo F, Verkleij J, Schat H (2008) Cadmium and arsenic tolerance and accumulation in AtMT2b expressing lines of tobacco. In: Lišková D, Lux A, Martinka M (eds) Contaminants and nutrients availability, accumulation/exclusion and plant–microbia–soil interactions, COST Action 859. Mgr. P Cibulka, Copycentrum PACI, Bratislava, p 50Google Scholar
  69. Guo WJ, Meetam M, Goldsbrough PB (2009) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706CrossRefGoogle Scholar
  70. Gupta S, Reiser R (2006) Behaviour of antimony in soil, transfer from soil into plant, risk management strategy. In: Dias S (ed) Phytotechnologies: lessons from pilot and field scale, COST Action 859. Sintra, Portugal, p 18Google Scholar
  71. Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–396CrossRefGoogle Scholar
  72. Hartley W, Lepp NW (2008) Effect of in situ soil amendments on arsenic uptake in successive harvests of ryegrass (Lolium perenne cv Elka) grown in amended As-polluted soils. Environ Pollut 156:1030–1040CrossRefGoogle Scholar
  73. Harvey PJ, Chapman M (2008) Challenge of growing food crops on degraded land and land contaminated with organic pollutants. In: Singh BR, Korslund LM (eds) Challenges on improving quality and safety of food crops, COST859. Norwegian University of Life Sciences, Ås, pp 23–24Google Scholar
  74. Hassinen VH, Tervahauta AI, Halimaa P, Plessl M, Peraniemi S, Schat H, Aarts MGM, Servomaa K, Karenlampi SO (2007) Isolation of Zn-responsive genes from two accessions of the hyperaccumulator plant Thlaspi caerulescens. Planta 225:977–989CrossRefGoogle Scholar
  75. Hassinen VH, Tuomainen M, Peraniemi S, Schat H, Karenlampi SO, Tervahauta AI (2009) Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspi caerulescens. J Exp Bot 60:187–196CrossRefGoogle Scholar
  76. Hauser MT (2008) The potential of association studies for heavy metal remediation technologies by willow (Salix caprea). In: Lišková D, Lux A, Martinka M (eds) Contaminants and nutrients availability, accumulation/exclusion and plant–microbia–soil interactions, COST Action 859. Mgr. P Cibulka, Copycentrum PACI, Bratislava, p 20Google Scholar
  77. Heudiard A, Salis P, Verbruggen N (2007) Study of overexpression of metallothioneins in Nicotiana plumbaginifolia. In: Golan A (ed) Nutrient biofortification and exclusion of pollutants in food plants, COST Action 859. Ben-Gurion University of the Negev, Sede-Boqer, p 48Google Scholar
  78. Hilber I, Vogt L, Wyss GS, Mäder P, Schulin R (2007) Soil amendment with activated charcoal can reduce dieldrin uptake by cucumbers. In: Golan A (ed) Nutrient biofortification and exclusion of pollutants in food plants, COST Action 859. Ben-Gurion University of the Negev, Sede-Boqer, p 21Google Scholar
  79. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152CrossRefGoogle Scholar
  80. Hoang Thi TT, Tu Thi CL, Phu Quoc D (2007) Phytoremediation for heavy metal contaminated sediments of the HoChiMinh city. A primary study. In: Golan A (ed) Nutrient biofortification and exclusion of pollutants in food plants, COST Action 859. Ben-Gurion University of the Negev, Sede-Boqer, p 35Google Scholar
  81. Huber C, Bartha B, Schröder P (2009) Influence of diclofenac on plant antioxidative stress defence systems. In: Erdei L (ed) Uptake, sequestration and detoxification—an integrated approach, COST Action 859. University of Szeged, Szeged, p 18Google Scholar
  82. Huguet S, Laboudigue A, Sarret G, Bert V (2007) Phytoextraction and hyperaccumulating plant: is it possible? In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 202–203Google Scholar
  83. Imfeld G, Braeckevelt M, Kuschk P, Richnow HH (2009) Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere 74:349–362CrossRefGoogle Scholar
  84. Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106CrossRefGoogle Scholar
  85. Istriteanu D, Nita V (2007) Phytoextraction of metals using Calendula officinalis, Zea mays and Plantago lanceolata. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 114–115Google Scholar
  86. Jasinski M, Sudre D, Schansker G, Schellenberg M, Signarbieux C, Martinoia E, Bovet L (2008) AtOSA1, a member of the ABC1-like family, as a new factor in cadmium and oxidative stress response. Plant Physiol 147:719–731CrossRefGoogle Scholar
  87. Jaunatre R (2008) Agrostis capillaris et endophytes bactériens: une association pour stimuler la tolérance aux sols contaminés au cuivre. Master 2 dissertation, Fonctionnement et Modélisation des Ecosystèmes Terrestres, Université Bordeaux 1, Talence, France, p 27Google Scholar
  88. Kamińska J, Moniuszko G, Gaganidze D, Aarts MGM, Sirko A (2008) Effects of ectopic expression of cDNAs from Thlaspi caerulescens on accumulation of heavy metals in tobacco plants. In: Furini A et al (eds) Genes and proteins involved in limiting steps of phytoextraction and degradation of pollutants, COST Action 859. University of Verona, Verona, pp 13–14Google Scholar
  89. Keller C, Diallo S, Cosio C, Basic N, Galland N (2006) Cadmium tolerance and hyperaccumulation by Thlaspi caerulescens populations grown in hydroponics are related to plant uptake characteristics in the field. Funct Plant Biol 33:673–684CrossRefGoogle Scholar
  90. Kidd PS, Becerra Castro C, Garcia Leston M, Monterroso C (2007) Application of nickel hyperaccumutating plants in natural phytoextraction: the Alyssum L. genus. Ecosistemas 16:27–44Google Scholar
  91. Kieffer P, Planchon S, Oufir M, Ziebel J, Dommes J, Hoffmann L, Hausman JF, Renaut J (2009) Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. J Proteome Res 8:400–417CrossRefGoogle Scholar
  92. Kim DY, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140:922–932CrossRefGoogle Scholar
  93. Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218CrossRefGoogle Scholar
  94. Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272CrossRefGoogle Scholar
  95. Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28:215–225CrossRefGoogle Scholar
  96. Larsen M, Trapp S (2006) Uptake of iron cyanide complexes into willow trees. Environ Sci Technol 40:1956–1961CrossRefGoogle Scholar
  97. Lebeau T, Braud A, Jezequel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522CrossRefGoogle Scholar
  98. LeDuc DL, Terry N (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotech 32:514–520CrossRefGoogle Scholar
  99. Leggo PJ, Ledesert B, Christie G (2006) The role of clinoptilolite in organo-zeolitic-soil systems used for phytoremediation. Sci Total Environ 363:1–10CrossRefGoogle Scholar
  100. Lepp NW, Madejon P (2007) Cadmium and zinc in vegetation and litter of a voluntary woodland that has developed on contaminated sediment-derived soil. J Environ Qual 36:1123–1131CrossRefGoogle Scholar
  101. Lewandowska M, Kamińska J, Borcz B, Sirko A (2007) Using suppression subtractive hybridization method for identification of tobacco genes responding to Cd-treatment. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, p 173Google Scholar
  102. Lopez-Millan AF, Sagardoy R, Solanas M, Abadia A, Abadia J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65:376–385CrossRefGoogle Scholar
  103. Lux A, Vaculík M, Luxová M, Kodama S (2006) Alleviating effect of silicon on cadmium toxicity in hydroponically cultivated maize. In: Bouchardon JL, Faure O, Leclerc JC (eds) Omics approaches and agricultural management: driving forces to improve food quality and safety? COST Action 859. Université Jean Monnet, Ecole Nationale Supérieure des Mines, Saint-Etienne, p 86Google Scholar
  104. Macek T, Uhlík O, Šanda M, Hlavácová E, Jecná K, Štursa P, Macková M (2008) Importance of rhizospheric bacteria for bioremediation and approaches for their studies. In: Lišková D, Lux A, Martinka M (eds) Contaminants and nutrients availability, accumulation/exclusion and plant–microbia–soil interactions, COST Action 859. Mgr. P Cibulka, Copycentrum PACI, Bratislava, pp 28–29Google Scholar
  105. Mackova M, Vrchotova B, Francova K, Sylvestre M, Tomaniova M, Lovecka P, Demnerova K, Macek T (2007) Biotransformation of PCBs by plants and bacteria—consequences of plant–microbe interactions. Eur J Soil Biol 43:233–241CrossRefGoogle Scholar
  106. Madejón P, Lepp NW (2007) Arsenic in soils and plants of woodland regenerated on an arsenic-contaminated substrate: a sustainable natural remediation? Sci Total Environ 379:256–262CrossRefGoogle Scholar
  107. Mala J, Machova P, Cvrckova H, Vanek T (2007) Heavy metals uptake by the hybrid aspen and rowan-tree clones. J For Sci 53:491–497Google Scholar
  108. Marchetti M (2008) Screening soil microorganisms for use in plant trace element biofortification. In: Lišková D, Lux A, Martinka M (eds) Contaminants and nutrients availability, accumulation/exclusion and plant–microbia–soil interactions, COST Action 859. Mgr. P Cibulka, Copycentrum PACI, Bratislava, p 32Google Scholar
  109. Marques APGC, Oliveira RS, Samardjieva KA, Pissarra J, Rangel AOSS, Castro PML (2007) Solanum nigrum grown in contaminated soil: effect of arbuscular mycorrhizal fungi on zinc accumulation and histolocalisation. Environ Pollut 145:691–699CrossRefGoogle Scholar
  110. Martinez-Alcala I, Bernal MP (2007) Chemical properties and metal distribution in the rhizosphere of Lupinus albus L. grown in contaminated soils. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 20–21Google Scholar
  111. Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102CrossRefGoogle Scholar
  112. Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267CrossRefGoogle Scholar
  113. Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD (2007) Phytoextraction of cadmium and zinc by Salix from soil historically amended with sewage sludge. Plant Soil 290:157–172CrossRefGoogle Scholar
  114. Mckone TE, Maddalena RL (2007) Plant uptake of organic pollutants from soil: bioconcentration estimates based on models and experiments. Environ Toxicol Chem 26:2494–2504CrossRefGoogle Scholar
  115. Meers E, Ruttens A, Hopgood M, Lesage E, Tack FMG (2005) Potential of Brassica rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere 61:561–572CrossRefGoogle Scholar
  116. Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60:57–68CrossRefGoogle Scholar
  117. Meers E, Tack FMG, Van Slycken S, Ruttens A, Vangronsveld J, Verloo MG (2008) Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals. Int J Phytoremediation 10:390–414CrossRefGoogle Scholar
  118. Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175CrossRefGoogle Scholar
  119. Memon AR, Keskin BC, Yildizhan Y (2009) Transcriptome analysis of Cu responses in metal accumulator plant Brassica nigra Diyarbakir ecotype. In: Erdei L (ed) Uptake, sequestration and detoxification—an integrated approach, COST Action 859. University of Szeged, Szeged, p 63Google Scholar
  120. Mench M, Winkel B, Baize D, Bodet JM (2006) French bread wheat cultivars differ in grain Cd concentrations. In: Bouchardon JL, Faure O, Leclerc JC et al (eds) Omics approaches and agriculture management: driving forces to improve food quality and safety? COST Action 859. Université Jean Monnet, Ecole Nationale Supérieure des Mines, Saint-Etienne, pp 89–90Google Scholar
  121. Mench M, Gasté H, Bes C (2008) Phenotypic traits of metallicolous and non-metallicolous Agrostis capillaris exposed to Cu. In: Lišková D, Lux A, Martinka M (eds) Contaminants and nutrients availability, accumulation/exclusion and plant–microbia–soil interactions, COST Action 859. Mgr. P Cibulka, Copycentrum PACI, Bratislava, p 19Google Scholar
  122. Mench M, Schwitzguébel JP, Lepp N, Schröder P, Bert V, Gawronski S, Vangronsveld J, (2010) Successes and limitations of phytotechnologies at field scale: Outcomes, assessment and outlook from COST Action 859. J Soils Sediments (accepted, Ms. No. JSSS-D-09-00144)Google Scholar
  123. Michaláková LD (2007) Effect of ZnSO4 and Zn(NO3)2 on the production parameters, tolerance and multiplication of willow shoot culture in the presence of Cd(NO3)2. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 119–120Google Scholar
  124. Millan R, Gamarra R, Schmid T, Sierra MJ, Quejido AJ, Sanchez DM, Cardona AI, Fernandez A, Vera R (2006) Mercury content in vegetation and soils of the Almaden mining area (Spain). Sci Total Environ 368:79–87CrossRefGoogle Scholar
  125. Montarges-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A, Morel JL (2008) Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study. Phytochemistry 69:1695–1709CrossRefGoogle Scholar
  126. Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P-1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904CrossRefGoogle Scholar
  127. Moreno E, Penalosa J, Esteban E, Carpena RO (2007) Trace element accumulation and toxicity in Mediterranean shrubs after pyritic sludge supply. Trace elements accumulation and phytotoxicity in mediterranean shrubs after a treatment with pyritic sludge. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 190–192Google Scholar
  128. Nadubinská M, Banásová V, Ciamporová M, Lichtscheidl I, Horak O (2008) Comparison of heavy metal accumulation capacity of Arabidopsis halleri, Acetosella vulgaris and Thlaspi caerulescens from Slovakian metalliferous sites. In: Lišková D, Lux A, Martinka M (eds) Contaminants and nutrients availability, accumulation/exclusion and plant–microbia–soil interactions, COST Action 859. Mgr. P Cibulka, Copycentrum PACI, Bratislava, p 16Google Scholar
  129. Nakamura SI, Akiyama C, Sasaki T, Hattori H, Chino M (2008) Effect of cadmium on the chemical composition of xylem exudates from oilseed rape plants (Brassica napus L.). Soil Sci Plant Nutr 54:118–127Google Scholar
  130. Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguébel JP (2005) Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. Int J Phytoremediation 7:337–349CrossRefGoogle Scholar
  131. Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguébel JP (2007) Chemical mutagenesis—a promising technique to increase metal concentration and extraction in sunflowers. Int J Phytoremediation 9:149–165CrossRefGoogle Scholar
  132. Nehnevajova E, Herzig R, Bourigault C, Bangerter S, Schwitzguébel JP (2009) Stability of enhanced yield and metal uptake by sunflower mutants for improved phytoremediation. Int J Phytoremediation 11:329–346CrossRefGoogle Scholar
  133. Nepovim A, Hebner A, Soudek P, Gerth A, Thomas H, Smrcek S, Vanek T (2005) Phytoremediation of TNT by selected helophytes. Chemosphere 60:1454–1461CrossRefGoogle Scholar
  134. Nieminen T (2008) Remediation of Cu–Ni-contaminated forest soil using organic mulch and native woody plants. In: Lišková D, Lux A, Martinka M (eds) Contaminants and nutrients availability, accumulation/exclusion and plant–microbia–soil interactions, COST Action 859. Mgr. P Cibulka, Copycentrum PACI, Bratislava, p 38Google Scholar
  135. Novakova M, Mackova M, Chrastilova Z, Viktorova J, Szekeres M, Demnerova K, Macek T (2009) Cloning the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of PCB-phytoremediation. Biotechnol Bioeng 102:29–37CrossRefGoogle Scholar
  136. Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232CrossRefGoogle Scholar
  137. Ohlsson AB, Landberg T, Berglund T, Greger M (2008) Increased metal tolerance in Salix by nicotinamide and nicotinic acid. Plant Physiol Biochem 46:655–664CrossRefGoogle Scholar
  138. Olette R, Couderchet M, Biagianti S, Eullaffroy P (2008) Toxicity and removal of pesticides by selected aquatic plants. Chemosphere 70:1414–1421CrossRefGoogle Scholar
  139. Oliveira RS, Vosatka M, Dodd JC, Castro PML (2005) Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment. Mycorrhiza 16:23–31CrossRefGoogle Scholar
  140. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126CrossRefGoogle Scholar
  141. Page V, Weisskopf L, Feller U (2006) Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytol 171:329–341CrossRefGoogle Scholar
  142. Page V, Maric A, Schwitzguébel JP (2008) Detoxification mechanisms of sulphonated anthraquinones in rhubarb. In: Furini A (ed) Genes and proteins involved in steps of phytoextraction and degradation of pollutants, COST Action 859. University of Verona, pp. 33-34Google Scholar
  143. Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjrring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473CrossRefGoogle Scholar
  144. Pelloux J, Rustérucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277CrossRefGoogle Scholar
  145. Perepelyatnikov G, Perepelyatnikova L, Ivanova T, Kalynenko L, Grytsyuk N, Zhurba M, Davydchuk V, Arapis G (2007) Radiological efficiency of agricultural countermeasures applied in radiocontaminated fields. J Environ Eng Landsc Manag 15:243–252Google Scholar
  146. Petroff A, Mailliat A, Amielh M, Anselmet F (2008) Aerosol dry deposition on vegetative canopies. Part 1: review of present knowledge. Atmos Environ 42:3625–3653CrossRefGoogle Scholar
  147. Petrova S (2008) Uptake and distribution of uranium in Armoracia rusticana. In: Lišková D, Lux A, Martinka M (eds) Contaminants and nutrients availability, accumulation/exclusion and plant–microbia–soil interactions, COST Action 859. Mgr. P Cibulka, Copycentrum PACI, Bratislava, p 21Google Scholar
  148. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39CrossRefGoogle Scholar
  149. Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi calerulescens. J Exp Bot 58:1717–1728CrossRefGoogle Scholar
  150. Podlipna R, Fialova Z, Vanek T (2008) Toxic effect of nitroesters on plant tissue cultures. Plant Cell Tissue Organ Cult 94:305–311CrossRefGoogle Scholar
  151. Pohu A, Roussel H, Bidar G, Waterlot C, Garçon G, Pruvot C, Shirali P, Douay F (2008) Influence d’une modification des paramètres physico-chimiques d’un sol fortement pollué par les éléments traces métalliques sur l’asymétrie fluctuante des feuilles d’essences arborées. Société Suisse de Pédologie et l’Association Française pour l’Etude des Sols, February 7–8, Neuchâtel, SwitzerlandGoogle Scholar
  152. Pomponi M, Censi V, Di Girolamo V, De Paolis A, di Toppi LS, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta 223:180–190CrossRefGoogle Scholar
  153. Punshon T, Guerinot ML, Lanzirotti A (2009) Using synchrotron X-ray fluorescence microprobes in the study of metal homeostasis in plants. Ann Bot 103:665–672CrossRefGoogle Scholar
  154. Redjala T, SterckemanT MJL (2007) Checking the relevance of Michaelis–Menten function for modelling of root cadmium uptake. In: Zhu Y et al (eds) Biogeochemistry of trace elements: environmental protection, remediation and human health. Tsinghua University Press, Beijing, pp 710–711Google Scholar
  155. Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069CrossRefGoogle Scholar
  156. Reichenauer TG, Germida JJ (2008) Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem 1:708–717CrossRefGoogle Scholar
  157. Rigola D, Fiers M, Vurro E, Aarts MGM (2006) The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis. New Phytol 170:753–765CrossRefGoogle Scholar
  158. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9CrossRefGoogle Scholar
  159. Sancenon V, Puig S, Mateu-Andres I, Dorcey E, Thiele DJ, Penarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279:15348–15355CrossRefGoogle Scholar
  160. San-Miguel A, Raveton M, Reynaud S, Tissut M, Ravanel P (2007) Organochlorines in polluted soils: study of a potential remediation by plants. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs. COST Action 859. VGTU Press Technica, Vilnius, p 141Google Scholar
  161. Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse A, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815–1826CrossRefGoogle Scholar
  162. Scebba F, Arduini I, Ercoli L, Sebastiani L (2006) Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis. Biol Plant 50:688–692CrossRefGoogle Scholar
  163. Scheer CE, Rebollo P, Rees D, Slater A, Dougall T, Harvey PJ (2007) Treatment of petroleum-contaminated soil by combined bio-phytoremediation. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, p 69Google Scholar
  164. Schreiber L (2006) Review of sorption and diffusion of lipophilic molecules in cuticular waxes and the effects of accelerators on solute mobilities. J Exp Bot 57:2515–2523CrossRefGoogle Scholar
  165. Schröder P (2007) Exploiting plant metabolism for phytoremediation of organic xenobiotics. In: Willey N (ed) Phytoremediation: methods and reviews. Humana, Totowa, pp 251–264CrossRefGoogle Scholar
  166. Schröder P, Collins CJ (2002) Conjugating enzymes involved in xenobiotic metabolism of organic xenobiotics in plants. Int J Phytoremediation 4:247–265CrossRefGoogle Scholar
  167. Schröder P, Navarro-Avino J, Azaizeh H, Golan-Goldhirsh A, DiGregorio S, Komives T, Langergraber G, Lenz A, Maestri E, Memon AR, Ranallil A, Sebastiani L, Smrcek S, Vanek T, Vuilleumier S, Wissing F (2007a) Using phytoremediation technologies to upgrade wastewater treatment in Europe. Environ Sci Pollut Res 14:490–497CrossRefGoogle Scholar
  168. Schröder P, Scheer CE, Diekmann F, Stampfl A (2007b) How plants cope with foreign compounds—translocation of xenobiotic glutathione conjugates in roots of barley (Hordeum vulgare). Environ Sci Pollut Res 14:114–122CrossRefGoogle Scholar
  169. Schröder P, Ljubenova L, Götz C, Huber C, Golan-Goldhirsh A (2007c) Plant response to organic xenobiotics: how mixed pollution interferes with detoxification capacity. In: Golan A (ed) Nutrient biofortification and exclusion of pollutants in food plants, COST Action 859. Ben-Gurion University of the Negev, Sede-Boqer, p 44Google Scholar
  170. Schröder P, Daubner D, Maier H, Neustifter J, Debus R (2008) Phytoremediation of organic xenobiotics—glutathione dependent detoxification in Phragmites plants from European treatment sites. Bioresour Technol 99:7183–7191CrossRefGoogle Scholar
  171. Schwitzguébel JP, Braillard S, Aubert S, Page V (2008) Accumulation and transformation of sulphonated aromatic compounds by higher plants—towards the phytotreatment of wastewater from dye and textile industry. In: Khan NA, Singh S (eds) Molecular physiology of sulfur assimilation and abiotic stress. Springer, Berlin, pp 335–353CrossRefGoogle Scholar
  172. Semane B, Cuypers A, Smeets K, Van Belleghem F, Horemans N, Schat H, Vangronsveld J (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129:519–528CrossRefGoogle Scholar
  173. Shah K, Nongkynrih JM (2007) Metal hyperaccumulation and bioremediation. Biol Plant 51:618–634CrossRefGoogle Scholar
  174. Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042CrossRefGoogle Scholar
  175. Shilev S, Fernandez A, Benlloch M, Sancho ED (2006) Sunflower growth and tolerance to arsenic is increased by the rhizospheric bacteria Pseudomonas fluorescens. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils. NATO Sci Ser IV Earth Environ Sci 68:315–318Google Scholar
  176. Sierra MJ, Millán R, Esteban E, Cardona AI (2006) Study of mercury uptake by common vetch at different scales. In: Dias S (ed) Phytotechnologies lessons from pilot and field scale, COST Action 859. Sintra, Portugal, p 17Google Scholar
  177. Sierra MJ, Seco A, Esteban E, Millan R (2007) Mercury distribution in lentil: greenhouse and lysimeter experiments. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 193–194Google Scholar
  178. Sipila TP, Keskinen AK, Akerman ML, Fortelius C, Haahtela K, Yrjala K (2008) High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME J 2:968–981CrossRefGoogle Scholar
  179. Smeets K, Ruytinx J, Semane B, Van Belleghem F, Remans T, Van Sanden S, Vangronsveld J, Cuypers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63:1–8CrossRefGoogle Scholar
  180. Sterckeman T, Redjala T, Skiker S, Echevarria G (2008) Nickel root uptake: contribution of apoplastic and symplastic pathways. In: Lišková D, Lux A, Martinka M (eds) Contaminants and nutrients availability, accumulation/exclusion and plant–microbia–soil interactions, COST Action 859. Mgr. P Cibulka, Copycentrum PACI, Bratislava, p 15Google Scholar
  181. Strizhakova ER, Ivanova EG, Vasilyeva GK (2007) Use of activated carbon for phytoremediation of PCB contaminated soil. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 116–118Google Scholar
  182. Sudre D, Jasinski M, Gaymard F, Bovet L, Martinoia E (2009) Characterisation of AtABCB29 (ATH12), a new member of ABC transporter proteins family involved in metals transport across chloroplast membrane. In: Erdei L (ed) Uptake, sequestration and detoxification—an integrated approach, COST Action 859. University of Szeged, Szeged, p 25Google Scholar
  183. Tejklová E, Blažek O, Smýkalová I, Vrbová M, Větrovcová M, Griga M (2007) In vitro screening of Linum usitatissimum L. varieties for Cd-tolerance and Cd-accumulation. In: Golan A (ed) Nutrient biofortification and exclusion of pollutants in food plants, COST Action 859. Ben-Gurion University of the Negev, Sede-Boqer, p 31Google Scholar
  184. Tennstedt P, Peisker D, Bottcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149:938–948CrossRefGoogle Scholar
  185. Trapp S (2004) Plant uptake and transport models for neutral and ionic chemicals. Environ Sci Pollut Res 11:33–39CrossRefGoogle Scholar
  186. Uhlik O, Jecna K, Mackova M, Leigh MB, Demnerova K, Macek T (2008) Stable isotope probing as a tool for the detection of active microorganisms in xenobiotics degradation. Chem Listy 102:474–479Google Scholar
  187. Unterbrunner R, Puschenreiter M, Sommer P, Wieshammer G, Tlustoš P, Zupan M (2007) Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ Pollut 148:107–114CrossRefGoogle Scholar
  188. Vakulik M, Lux A, Luxová M, Lichtscheidl I (2007) Silicon mitigates cadmium inhibitory effects in maize roots. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 157–158Google Scholar
  189. Van de Mortel JE, Schat H, Moerland PD, Loren V, van Themaat E, van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MGM (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31:301–324CrossRefGoogle Scholar
  190. Van Hoewyk D, Pilon M, Pilon-Smits EAH (2008) The functions of NifS-like proteins in plant sulfur and selenium metabolism. Plant Sci 174:117–123CrossRefGoogle Scholar
  191. Van Holderbeke M, De Brouwere K, Cornelis C, Seuntjens P (2007) Xtrafood: a model for the impact analysis of contaminants in primary food production. Regulating chemical risk: science, politics and the media. The Centre for Baltic and East European Studies (CBEES), Stockholm, p 2Google Scholar
  192. Vanek T, Nepovim A, Podlipna R, Hebner A, Vavikova Z, Gerth A, Thomas H, Smrcek S (2006) Phytoremediation of explosives in toxic wastes. In: Twardowska I, Allen HE, Haggblom MH (eds) Soil and water pollution monitoring, protection and remediation. NATO Sci Ser IV Earth Environ Sci 69:455–465Google Scholar
  193. Vanek T, Soudek P, Vavrikova Z, Podlipna R (2007) Phytoremediation of nitrocompounds in industrial waste-waters—case study. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 75–76Google Scholar
  194. Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009a) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res. doi:10.1007/s11356-009-0213-6
  195. Vangronsveld J, Weyens N, Ruttens A, Vassilev A, Mench M (2009b) Land revitalisation. In: Vanek T (ed) Phytotechnologies solutions for sustainable land management. Encyclopedia of life support systems. Eolss, Oxford. Available at http://www.eolss.net/outlinecomponents/Phytotechnologies-Solutions-Sustainable-Land-Management.aspx
  196. Vasilyeva GK, Strijakova ER, Shea PJ (2006) Use of activated carbon for soil bioremediation. NATO Sci Ser IV Earth Environ Sci 69:309–322Google Scholar
  197. Vazquez S, Esteban E, Carpena RO (2008) Evolution of arsenate toxicity in nodulated white lupine in a long-term culture. J Agric Food Chem 56:8580–8587CrossRefGoogle Scholar
  198. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776CrossRefGoogle Scholar
  199. Vivas A, Biró B, Németh T, Barea JM, Azcón R (2006a) Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol Biochem 38:2694–2704CrossRefGoogle Scholar
  200. Vivas A, Barea JM, Biro B, Azcon R (2006b) Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. J Appl Microbiol 100:587–598CrossRefGoogle Scholar
  201. Vodnik D, Grcman H, Macek I, van Elteren JT, Kovacevic M (2008) The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136CrossRefGoogle Scholar
  202. Vogel-Mikus K, Simcic J, Pelicon P, Budnar M, Kump P, Necemer M, Mesjasz-Przybylowicz J, Przybylowicz WJ, Regvar M (2008) Plant comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Plant Cell Environ 31:1484–1496CrossRefGoogle Scholar
  203. Walker DJ, Bernal MP, Correal E (2007) The influence of heavy metals and mineral nutrient supply on Bituminaria bituminosa. Water Air Soil Pollut 184:335–345CrossRefGoogle Scholar
  204. Wei SH, da Silva JAT, Zhou QX (2008) Agro-improving method of phytoextracting heavy metal contaminated soil. J Hazard Mat 150:662–668CrossRefGoogle Scholar
  205. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84CrossRefGoogle Scholar
  206. Willems G, Dräger DB, Courbot M, Godé C, Verbruggen N, Saumitou-Laprade P (2007) The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176:659–674CrossRefGoogle Scholar
  207. Wojas S, Martinoia E, Geisler M, Skodowska A, Antosiewicz DM (2008a) Engineering of root/shoot metal distribution: medium composition dependent phenotype of tobacco expressing AtMRP7. In: Furini A (ed) Genes and proteins involved in steps of phytoextraction and degradation of pollutants, COST Action 859. University of Verona, pp 9–10Google Scholar
  208. Wojas S, Clemens S, Hennig J, Skodowska A, Kopera E, Schat H, Bal W, Antosiewicz DM (2008b) Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. J Exp Bot 59:2205–2219CrossRefGoogle Scholar
  209. Wu J, Schat H, Sun R, Koornneef M, Wang XW, Aarts MGM (2007) Characterization of natural variation for zinc, iron and manganese accumulation and zinc exposure response in Brassica rapa L. Plant Soil 291:167–180CrossRefGoogle Scholar
  210. Xing JP, Jiang RF, Ueno D, Ma JF, Schat H, McGrath SP, Zhao FJ (2008) Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytol 178:315–325CrossRefGoogle Scholar
  211. Zelko I, Lux A, Czibula K (2008) Difference in the root structure of hyperaccumulator Thlaspi caerulescens and non-hyperaccumulator Thlaspi arvense. Int J Environ Pollut 33:123–132CrossRefGoogle Scholar
  212. Zhao FJ, McGrath SP (2005) Phytoextraction of metals from contaminated soils: fact and fiction. In: Barbafieri M, Tassi E, Francalanci G (eds) COST Action 859, 1st Scientific Workshop, 14–16 June, CNR (National Research Council), Pisa, p 22Google Scholar
  213. Zhao FJ, McGrath S, Gray C, Lopez-Bellido J (2007) Selenium concentrations in UK wheat and biofortification strategies. Comp Biochem Physiol Part A Mol Integr Physiol 146:S246CrossRefGoogle Scholar
  214. Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794CrossRefGoogle Scholar
  215. Zhuang XL, Chen J, Shim H, Bai ZH (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413CrossRefGoogle Scholar
  216. Zimmer D, Baum C, Leinweber P, Hrynkiewicz K, Meissner R (2009) Associated bacteria increase the phytoextraction of cadmium and zinc from a metal-contaminated soil by mycorrhizal willows. Int J Phytoremediation 11:200–213CrossRefGoogle Scholar
  217. Zorrig W, Sarrobert C, Rouached A, Maisonneuve B, Davidian JC, Abdelly C, Berthomieu P (2009) Genetic and physiological determinants controlling cadmium accumulation in lettuce (Lactuca sativa). In: Erdei L (ed) Uptake, sequestration and detoxification—an integrated approach, COST Action 859. University of Szeged, Szeged, p 75Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Michel Mench
    • 1
  • Jean-Paul Schwitzguébel
    • 2
  • Peter Schroeder
    • 3
  • Valérie Bert
    • 6
  • Stanislaw Gawronski
    • 5
  • Satish Gupta
    • 4
  1. 1.UMR BIOGECO INRA 1202, Ecologie des CommunautésUniversité Bordeaux 1TalenceFrance
  2. 2.Laboratory for Environmental Biotechnology (LBE)Swiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
  3. 3.Department Microbe–Plant InteractionsHelmholtz Zentrum München—German Research Center for Environmental HealthNeuherbergGermany
  4. 4.Agroscope FAL ReckenholzSwiss Federal Research Station for Agroecology and AgricultureZurichSwitzerland
  5. 5.Laboratory of Basic Research in HorticultureWarsaw University of Life SciencesWarsawPoland
  6. 6.Unité Technologies et Procédés Propres et Durables, DRC, INERIS, Parc Technologique ALATA BP2Verneuil-en-HalatteFrance

Personalised recommendations