Advertisement

Environmental Science and Pollution Research

, Volume 17, Issue 2, pp 250–260 | Cite as

Effect-related monitoring: estrogen-like substances in groundwater

  • Bertram Kuch
  • Frieder Kern
  • Jörg W. Metzger
  • Karl Theo von der TrenckEmail author
CHEMICAL AND BIOLOGICAL ENVIRONMENTAL MONITORING • SERIES • RESEARCH ARTICLE

Abstract

Background, aim, and scope

Concentration monitoring as a basis for risk assessment is a valid approach only if there is an unambiguous relation between concentration and effect. In many cases, no such unambiguous relation exists, since various substances can exert the same effect with differing potencies. If some or all of these substances contributing to a biological effect are unknown, effect-related monitoring becomes indispensable. Endocrine-disrupting substances in water bodies, including the groundwater, are a prominent example of such a case. The aim of the investigations described here was to detect hormonally active substances in the groundwater downstream of obsolete landfills by using the E-screen assay and to possibly assign the biological effect to individual chemical compounds by means of instrumental analyses carried out in parallel.

Materials and methods

Grab samples of the groundwater were collected downstream from abandoned landfills and prepared by liquid/liquid extraction. The total estrogenic activity in these samples was determined in vitro by applying the E-screen assay. The human breast cancer cells (MCF-7) used in the E-screen proliferate in response to the presence of estrogenically active compounds. Expressed in concentration units of the reference substance 17β-estradiol (E2), the test system allows the quantification of estrogenicity with a limit of detection (LOD) in the range of 0.1 ng/L. Aliquots of the samples were screened using gas chromatography/mass spectrometry (GC/MS) in order to quantify known estrogenically active substances and to identify unknown compounds. Estrogen-positive samples were extracted at different pH values, split into acidic, neutral, and basic fractions and analyzed by GC/MS, searching for individual components that display estrogenic activity.

Results and discussion

Estrogenic activity exceeding the LOD and the provisional benchmark of 0.5 ng E2/L was found at three out of seven abandoned waste disposal sites tested. The low concentrations of known xenoestrogens such as bisphenol-A, nonylphenols, or phthalic acid esters determined by GC/MS, however, were not sufficient to explain the detected activity. Neither natural nor synthetic hormones have caused the activity because these chemical structures are readily degradable and cannot persist in abandoned landfills for decades. The highest activity in the E-screen assay was found in the acidic fractions. Hydroxy-polychlorinated biphenyls (PCBs), hydroxylated polycyclic aromatic hydrocarbons (PAHs) and hetero-PAHs, as well as alkylphenols could be identified as further compounds with possible hormonal activity.

Conclusions

Estrogenically active substances may occur in the groundwater below obsolete landfills, especially those that contain PCBs or waste from gasworks. These substances are not part of analytical programs routinely applied to contaminated sites and may therefore escape detection and assessment. Analyses using the E-screen assay and GC/MS in parallel have shown that the total estrogenic activity found in groundwater samples is to be ascribed to a multitude of individual compounds, some of which cannot be quantified due to lack of standard substances or assessed due to lack of a standardized procedure for determination of their estrogenic potency. By comparison with provisional guide values for estradiol (0.5 ng/L) and ethynylestradiol (0.3 ng/L), the damaging potential of the total estrogenic activity in groundwater samples can in fact be assessed, but specific remediation measures are impossible unless the hormonal activity can be attributed to individual chemical substances.

Recommendations and outlook

On the one hand, further analyses of samples taken from possible pollution sources should be conducted in order to characterize the extent of groundwater pollution with xenoestrogens. On the other hand, the most potent individual compounds should be identified according to their estrogenic potency. To this end, bioassay-directed fractionation and structure elucidation should be carried out with concentrated samples.

Keywords

17β-estradiol Contaminated site Endocrine disruptors E-screen assay Gas chromatography/mass spectrometry (GC/MS) Groundwater Guide value Landfill Xenoestrogens 

Notes

Acknowledgements

We are grateful for the expert editorial support by Anthony Rackstraw, Weinheim, and project management by Heike Schuler, ARCADIS CONSULT GmbH, Karlsruhe. The LUBW is acknowledged for financing this project.

References

  1. Aerni H-R, Kobler B, Rutishauser BV, Wettstein FE, Fischer R, Giger W, Hungerbühler A, Marazuela MD, Peter A, Schönenberger R, Vögeli ACh, Suter MJ-F, Eggen RIL (2004) Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents. Anal Bioanal Chem 378:688–696CrossRefGoogle Scholar
  2. BMU (1999) Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV). Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. BGBl, I. Teil, Nr. 36 vom 16.7.1999, p 1554Google Scholar
  3. Bolz U (2000) Entwicklung und Anwendung von GC/MS-Methoden zum Nachweis phenolischer Xenoestrogene sowie natürlicher und synthetischer Estrogene in aquatischen Umweltproben unter Berücksichtigung einer wirkungsbezogenen Analytik (E-Screen-Assay). Dissertation, Tübingen UniversityGoogle Scholar
  4. Buckman A, Brown SB, Hoekstra PF, Solomon KR, Fisk AT (2004) Toxicokinetics of three polychlorinated technical mixtures in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 23(7):1725–1736CrossRefGoogle Scholar
  5. Duis K, Knacker T (2003) Untersuchungen zum Einfluss der Verfahrenstechnik in Kläranlagen auf die Eliminierung ausgewählter Östrogene und Xenoöstrogene aus dem Abwasser, Teilprojekt III: Wirkungsuntersuchungen. Abschlussbericht BMFT-Projekt FKZ 02WA9980/6. Flörsheim/Main, ECT Oekotoxikologie GmbH; S 1–72Google Scholar
  6. EC (2003) Technical Guidance Document in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (European Commission, EC) 1488/94 on Risk Assessment for existing substances, Directive 98/8/EC of the European Parliament and the Council concerning the placing of biocidal products on the market. Part II 2nd edition, 328 p.; Brussels, Report No. EUR 20418 EN/2Google Scholar
  7. EU (2003) Scientific Synthesis Report—Drinking Water Seminar. Seminar on Drinking Water, Brussels, 27 and 28 October 2003, issued December 2003Google Scholar
  8. Fertuck KC, Kumar S, Sikka HC, Matthews JB, Zacharewski TR (2001) Interaction of PAH-related compounds with the α and β isoforms of the estrogen receptor. Toxicol Lett 121(3):167–177CrossRefGoogle Scholar
  9. Gierthy JF, Arcaro KF, Floyd M (1997) Assessment of PCB estrogenicity in a human breast cancer cell line. Chemosphere 34(5–7):1495–1505CrossRefGoogle Scholar
  10. Grist EPM, Wells NC, Whitehouse P, Brighty G, Crane M (2003) Estimating the effects of 17α-Ethinylestradiol on populations of the Fathead Minnow P. promelas: are conventional toxicological endpoinds adequate? Environ Sci Technol 37(8):1609–1616CrossRefGoogle Scholar
  11. Gülden M, Turan A, Seibert H (1997) Substanzen mit endokriner Wirkung in Oberflächengewässern Forschungsbericht 102 04 279 UBA-FB 97-068. UBA-Texte 46/97, Umweltbundesamt, BerlinGoogle Scholar
  12. Hollert H, Dürr M, Holtey-Weber R, Islinger M, Brack W, Färber H, Erdinger L, Braunbeck T (2005) Endocrine disruption of water and sediment extracts in a non-radioactive dot blot/RNAse protection-assay using isolated hepatocytes of rainbow trout. Environ Sci Pollut Res 12(6):347–360CrossRefGoogle Scholar
  13. Hovander L, Malmberg T, Athanasiadou M, Athanassiadis I, Rahm S, Bergman Å, Klasson Wehler E (2002) Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma. Arch Environ Contam Toxicol 42(1):105–17CrossRefGoogle Scholar
  14. Kester MHA, Bulduk S, Tibboel D, Meinl W, Glatt H, Falany CN, Coughtrie MWH, Bergman A, Safe SH, Kuiper GGJM, Schuur AG, Brouwer A, Visser TJ (2000) Potent inhibition of sulfotransferase by hydroxylated PCB metabolites: a novel pathway explaining the estrogenic activity of PCBs. Endocrinology 141(5):1897–1900CrossRefGoogle Scholar
  15. Khim JS, Kannan K, Villeneuve DL, Kang J, Koh CH, Giesy JP (2000) Relative potencies of individual polycyclic aromatic hydrocarbons to induce dioxin-like and estrogenic responses in three different cell lines. Organohalog Compd 49:174–177Google Scholar
  16. Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, Flick RW (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci USA 104(21):8897–8901CrossRefGoogle Scholar
  17. Körner W (2000) Nachweis von estrogen- und androgenartig wirkenden Substanzen in der Umwelt durch Kombination von chemischer und biologischer Analytik. Professorial dissertation, Tübingen UniversityGoogle Scholar
  18. Körner W, Schuller W, Hagenmaier H, Hanf V (1999a) Entwicklung und praktische Erprobung eines einfachen Screening-Systems für estrogenartig wirkende Umweltchemikalien. Forschungsbericht Projekt Umwelt und Gesundheit des Landes Baden-Württemberg, Förderkennzeichen: PUG U 95 004Google Scholar
  19. Körner W, Hanf V, Schuller W, Kempter C, Metzger J, Hagenmaier H (1999b) Development of a sensitive E-screen assay for quantitative analysis of estrogenic activity in municipal sewage treatment plants. Sci Total Environ 225(1–2):33–48Google Scholar
  20. Kortenkamp A, Faust M, Scholze M, Backhaus T (2007) Low-level exposure to multiple chemicals: reason for human health concerns? Environ Health Perspect 115(Suppl 1):106–114CrossRefGoogle Scholar
  21. Kuch HM, Ballschmiter K (2001) Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environ Sci Technol 35(15):3201–3206CrossRefGoogle Scholar
  22. Kuch B, Schneider C, Metzger JW (2003) Pharmaka und Hormone in der aquatischen Umwelt. Final Report of the Research Project UVM ONo. 53-00.01 funded by the Ministry for Environment and Traffic Baden-WürttembergGoogle Scholar
  23. Kuroki H, Yonekura S, Sakoda S, Fujino K, Nakaoka H, Aramaki H, Koga N, Nishikawa J, Nishihara T (2001) Assessment of hydroxylated metabolites of PCBs, PCDFs and chlorodiphenyl ethers as potential estrogens by yeast two-hybrid system. Organohalog Compd 53:80–83Google Scholar
  24. Länge R, Hutchinson TH, Croudace C, Siegmund F, Schweinfurth H, Hampe P, Panter GH, Sumpter JP (2001) Effects of the synthetic estrogen 17α-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 20:1216–1227CrossRefGoogle Scholar
  25. Legler J, Cenjin P, Malmberg T, Bergman A, Brouwer A (2002) Determination of the endocrine potency of hydroxylated PCBs and flame retardants with in vitro bioassays. Organohalog Compd 56:53–56Google Scholar
  26. Machala M, Ciganek M, Blaha L, Minksova K, Vondracek J (2001) Aryl hydrocarbon receptor-mediated and estrogenic activities of oxygenated polycyclic aromatic hydrocarbons and azaarenes originally identified in extracts of river sediments. Environ Toxicol Chem 20(12):2736–2743CrossRefGoogle Scholar
  27. Machala M, Blaha L, Lehmler HJ, Pliskova M, Majkova Z, Kapplova P, Sovadinova I, Vondracek J, Malmberg T, Robertson LW (2004) Toxicity of hydroxylated and quinoid PCB metabolites: inhibition of gap junctional intercellular communication and activation of aryl hydrocarbon and estrogen receptors in hepatic and mammary cells. Chem Res Toxicol 17(3):340–347CrossRefGoogle Scholar
  28. Meerts ATM, Letcher RJ, Hoving S, Marsh G, Bergman A, Lemmen JG, van der Burg B, Brouwer A (2001) In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PBDEs, and polybrominated bisphenol A compounds. Environ Health Perspect 109(4):399–407CrossRefGoogle Scholar
  29. Miller D, Wheals BB, Beresford N, Sumpter JP (2001) Estrogenic activity of phenolic additives determined by in vitro yeast bioassay. Environ Health Perspect 109(2):133–138CrossRefGoogle Scholar
  30. Miyazaki W, Iwasaki T, Takeshita A, Kuroda Y, Koibuchi N (2004) Polychlorinated biphenyls suppress thyroid hormone receptor-mediated transcription through a novel mechanism. J Biol Chem 279(18):18195–18202CrossRefGoogle Scholar
  31. Nash JP, Kime DE, van der Ven LTM, Wester PW, Brion F, Maack G, Stahlschmidt-Allner P, Tyler CR (2004) Long-term exposure to environmental concentrations of the pharmaceutical ethinylestradiol causes reproductive failure in fish. Environ Health Perspect 112(17):1725–1733Google Scholar
  32. Pelley J (2003) Estrogen knocks out fish in whole-lake experiment. Environ Sci Technol 37(17):313A–314ACrossRefGoogle Scholar
  33. Pickering AD, Sumpter JP (2003) Comprehending endocrine disruptors in aquatic environments. Environ Sci Technol 37:331A–336ACrossRefGoogle Scholar
  34. Rahtkens K, vd Trenck KT (2007) Schwermetalle in Regenwürmern Baden-Württembergs. Teil II: Ökotoxikologische Bewertung des Bodens. Umweltwiss Schadst Forsch 19(1):27–36CrossRefGoogle Scholar
  35. Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem 15(3):241–248CrossRefGoogle Scholar
  36. Safe SH, Connor K, Ramamorthy K, Moore M, Wang F, Mustain M, Chen I, Zacharewski T, Gillesby B, Joyeaux A, Balaguer P, Gaido K, Leonard L, Maness SC, McDonnell DP (1998) Estrogenic activity of hydroxylated polychlorinated biphenyls (PCBs) and their interactions. In: Eisenbrand G (ed) Hormonally active agents in food, symposium, Kaiserslautern, Germany, Oct. 6–9, 1996. Wiley-VCH GmbH, Weinheim, pp 200–207Google Scholar
  37. Santodonato J (1997) Review of the estrogenic and antiestrogenic activity of polycyclic aromatic hydrocarbons: relationship to carcinogenicity. Chemosphere 34(4):835–848CrossRefGoogle Scholar
  38. Schultis T (2005) Erfassung der estrogenen Wirksamkeit von Umweltproben und Reinsubstanzen durch biologische Testsysteme—Entwicklung und Vergleich von in-vitro Assays. Dissertation, Universität Stuttgart, Oldenburg Industrieverlag GmbH (Stuttgarter Berichte zur Siedlungswasserwirtschaft, Band 181), MünchenGoogle Scholar
  39. Shekan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82(13):1107–1112CrossRefGoogle Scholar
  40. Sonzogni W, Hemming J, Barman M, Geis S (2006) Occurrence of estrogenic endocrine disruptors in groundwater. Project report by the Wisconsin State Laboratory of Hygiene Investigators. http://waterresourcescience.com/Documents/esm223_03_Other_Reading_Sonzogni-et-al_Wisconsin_EDCs_2006.pdf
  41. Soto AM, Chung KL, Sonnenschein C (1994) The pesticides endosulfan, toxaphene and dieldrin have estrogenic effects on human estrogen-sensitive cells. Environ Health Perspect 102(4):380–383CrossRefGoogle Scholar
  42. Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO (1995) The E-screen assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect 103:113–122CrossRefGoogle Scholar
  43. Suter MJF (2002) Wie wirkt die Pille auf den Fisch? EAWAG news 53d, April 2002, 24–25Google Scholar
  44. vd Trenck KT (1997) Verunreinigte Böden: Prüfwerte und Konzepte—Ein kritischer Überblick. Umweltwiss Schadst Forsch 9(2):97–106CrossRefGoogle Scholar
  45. vd Trenck KT, Jaroni H (2001) Vergleichende Bewertung von Umweltschadstoffen anhand von Risiko-Kennlinien. In: Rippen G (Hrsg) Handbuch Umweltchemikalien, Band 1, II–1.2.1, S. 1–116 + Anhang (56. Erg. Lfg. 9/01), ecomed Verlag, LandsbergGoogle Scholar
  46. vd Trenck KT, Ruf J, Flittner M (1994) Guide values for contaminated sites in Baden-Württemberg. Environ Sci Pollut Res 1(4):253–261CrossRefGoogle Scholar
  47. UBA (2007) Relevance of endocrine disrupting substances and pharmaceuticals in surface waters. Final report on R & D-project FKZ 205 24 205 prepared by Moltmann JF, Liebig M, Knacker T, ECT Oekotoxikologie GmbH, Flörsheim, and Keller M, Scheurer M, Ternes T, Bundesanstalt für Gewässerkunde, Koblenz, commissioned by the German Federal Environment Agency (UBA), DessauGoogle Scholar
  48. Villeneuve DL, Khim JS, Kannan K, Giesy JP (2002) Relative potencies of individual polycyclic aromatic hydrocarbons to induce dioxin-like and estrogenic responses in three cell lines. Environ Toxicol 17(2):128–137CrossRefGoogle Scholar
  49. Yang J, Yin M (2002) Effect of 5 polycyclic aromatic hydrocarbons on estrogen receptor binding in rats. Weisheng Yanjiu 31(3):154–156Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Bertram Kuch
    • 1
  • Frieder Kern
    • 2
  • Jörg W. Metzger
    • 1
  • Karl Theo von der Trenck
    • 2
    Email author
  1. 1.Institut für Siedlungswasserbau, Wassergüte- und AbfallwirtschaftStuttgartGermany
  2. 2.Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (LUBW)KarlsruheGermany

Personalised recommendations