Twenty years of biological monitoring of element concentrations in permanent forest and grassland plots in Baden-Württemberg (SW Germany)

  • Jürgen FranzaringEmail author
  • Ingo Holz
  • Jürgen Zipperle
  • Andreas Fangmeier
Chemical and Biological Environmental Monitoring • Series • RESEARCH ARTICLE


Background, aim and scope

Environmental monitoring of pollutants in international or local programmes has enabled authorities to evaluate the success of political measures over time. Strict environmental legislation and the introduction of cleaner technologies have already led to significant improvements of the air and water quality in many countries. Still, the discharge and deposition of anthropogenic long-range transported pollutants often remain above the critical thresholds and long-term targets defined for terrestrial and aquatic ecosystems even in EU countries. In order to determine the spatial and temporal variation of pollutant and nutrient loads in different environmental media a unique ecological response cadastre (Ökologisches Wirkungskataster, ÖKWI) was set up in the Land of Baden-Württemberg (SW Germany) in the mid 1980s. As a part of the program a state-wide bioindicator network was established in 64 forest and 18 permanent grassland ecosystems, in which selected chemical elements were measured over time. Here, we report on the results of these analyses and discuss the general spatio-temporal trends in pollution loads.

Materials and methods

Sixty-four forest and 18 permanent grassland plots were established in state-owned forest and nature conservation areas of SW Germany representing different landscapes and geologies of the State of Baden-Württemberg. Apart from performing vegetation relevées in marked plots of either the grassland or forest sites, plant samples were collected in intervals of 2 to 3 years following a standardised protocol. To be able to compare the different monitoring sites, four common species were chosen as indicator species in the grasslands. Later on, also bulk grassland samples were taken regardless of the species. In the forests, foliage of the dominant tree species (Fagus sylvatica, Abiea alba or Fraxinus excelsior) was sampled in the crown of marked trees and from the same species in the herb layer. The elements analysed in the plant material were the essential plant nutrients C, N, S, P, Ca, K and Mg and the metals Mn, Cd, Pb, Al, Cu, Ni and Hg. Data were analysed using descriptive and multivariate statistics and maps were produced to identify regional differences in pollutant deposition.

Results and discussion

Out of the elements analysed, lead and sulphur concentrations showed the most pronounced downward trends over time in tree foliage and grassland samples with the largest decreases observed in the early 1990s. Both the reduced lead and sulphur levels in the biomonitors reflect the successful implementation of clean air policies, i.e. the introduction of unleaded gasoline, the availability of desulphurisation technologies and the economic transition of Eastern European heavy industries. However, the decrease in sulphur concentrations was lower in beech foliage from SW Germany as compared to beech leaves from six German national parks suggesting regional differences in sulphur deposition and trends thereof. At the same time, sulphur concentrations declined more strongly in the grassland samples indicating that much of the deposited sulphur remains in the forest ecosystems while in the grassland ecosystems it is gradually removed by the frequent cutting and grazing. During the time series, the decrease in sulphur deposition coincided with a marked increase in rain pH. At the same time, the increasing nitrogen concentrations observed over time in beech leaves suggest that emissions of oxidised and reduced nitrogen are still adding to the large-scale eutrophication of SW German forests. However, N concentrations in both the tree foliage and in the bulk grassland samples were unrelated to the modelled N deposition. When also considering macronutrient concentrations and N:P and N:K ratios, the results point to serious nutrient imbalances in many beech forests, which may reduce plant vitality and tree growth in the long run.


Biological monitoring using plants is an effective tool to address changes in the environmental quality over time and space. The success of European clean air policies and the introduction of emission reduction technologies could be mirrored by the declining sulphur and lead concentrations in the present and in other monitoring programmes. However, the changed deposition patterns, i.e. lower deposition of acids and higher deposition of reactive nitrogen, are coupled to changes in the soil chemistry and will continue to affect plant nutrition and the uptake of elements in the future.

Recommendations and perspectives

Although it could be shown that deposition of sulphur and lead has declined markedly in the past 20 years, biomonitoring is still necessary to reveal changes in element concentrations and nutrient imbalances. The use of plants as bioindicators should be continued as an integral part of environmental monitoring programmes. Besides the chemical analyses, also biometric parameters, e.g. thousand needle or leaf weights, biomass production in grassland plots and stem increments in forest plots, should be included to monitor the long-term responses of European ecosystems to environmental and climatic changes.


Biomonitoring Fagus sylvatica Heavy metals Nitrogen saturation Nutrient imbalances N:K ratio N:P ratio Sulphur deposition 



The authors are grateful for the funding of the project (contract grant Nr. 45000/7720) by the LUBW (State Institute for Environment, Measurements and Nature Conservation Baden-Württemberg, Karlsruhe). Mrs. Sigrid Strich from the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn) and Dr. Wolfgang Lux from the Institute for Forest Ecology and Forest Inventory (Eberswalde) are thanked for providing data on foliar nutrients from the long-term Hessian forest monitoring programme.


  1. Bealey WJ, Long S, Spurgeon DJ, Leith I, Cape JN (2008) Review and implementation study of biomonitoring for assessment of air quality outcomes. Science Report SC030175/SR2. Environment Agency, Bristol, 171 ppGoogle Scholar
  2. Benter D, Hafner J, Rueß L, Tscherko D, Kandeler E (2006) Endbericht zum Projekt: Monitoring der Umweltwirkungen von gentechnisch veränderten Organismen in Baden-Württemberg—Methodenetablierung und Aufnahme der ‘Baseline’. Stuttgart-HohenheimGoogle Scholar
  3. Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data analysis with R. Springer, Berlin 374 ppGoogle Scholar
  4. Cercasov V, Wulfmeyer V (2008) Trends in airborne particulates in Stuttgart, Germany: 1972–2005. Environ Pollut 152:304–313CrossRefGoogle Scholar
  5. EC (2006) Commission Regulation (EC) No 1737/2006 of 7 November 2006 laying down detailed rules for the implementation of Regulation (EC) No 2152/2003 of the European Parliament and of the Council concerning monitoring of forests and environmental interactions in the Community, European Commission, Brussels, 73 ppGoogle Scholar
  6. Flückiger W, Braun S (2003) Critical limits for nutrient concentrations and ratios for forest trees—a comment. In: Empirical critical loads for nitrogen, eds. SAEFL, Berne, pp 273–280Google Scholar
  7. Flückiger W, Braun S (2004) Wie geht es unserem Wald? Ergebnisse aus Dauerbeobachtungsflächen von 1984 bis 2004, Bericht 2. Institut für Angewandte Pflanzenbiologie, Schönenbuch, p 68Google Scholar
  8. FVA (2008) Waldzustandsbericht 2008 der Forstlichen Versuchs- und Forschungsanstalt Baden-Württemberg.—Freiburg, 60 ppGoogle Scholar
  9. Gauger Th, Haenel H-D, Rösemann C, Dämmgen U, Bleeker A et al (2007) Erfüllung der Zielvorgaben der UNECE-Luftreinhaltekonvention (Wirkungen): ICP Modelling & Mapping NFC; Schwermetalle (Critical Loads, Depositions); Stickstoff und Säure (Deposition); Stickstoff (Wirkung); Materialkorrosion; kritische Ozonflüsse—Teil 1: Deposition Loads: Methoden, Modellierung und Kartierungsergebnisse, Trends. Bundesforschungsanstalt für Landwirtschaft, Teil 2: Wirkungen und Risikoabschätzungen: Critical Loads, Biodiversität, Dynamische Modellierung, Critical Levels Überschreitungen, Materialkorrosion. Institut für Agrarökologie (FAL-AOE), Braunschweig. Abschlußbericht zum Forschungsvorhaben im Auftrag des BMU/UBA, FE-Nr. 204 63 25Google Scholar
  10. Harmens H, Norris D and the participants of the moss survey (2008a) Spatial and temporal trends in heavy metal accumulation in mosses in Europe (1990–2005). Programme Coordination Centre for the ICP Vegetation, Centre for Ecology and Hydrology, Bangor, UK,
  11. Harmens H, Norris D, Cooper D, Hall J and the participants of the moss survey (2008b) Spatial trends in nitrogen concentrations in mosses across Europe in 2005/2006. ICP Vegetation, DEFRA contract AQ0810,
  12. Hug R, Hepp R, von Wilpert K (2005) 18 Jahre Depositionsmessnetz der Forstlichen Versuchs- und Forschungsanstalt Baden-Württemberg. Berichte Freiburger Forstliche Forschung 59, 95 ppGoogle Scholar
  13. ICP Forests (2004) The condition of forests in Europe. 2004 Executive Report, 52 pp.
  14. ICP Vegetation (2008) Air pollution and vegetation. Annual Report 2007/2008, CEH Bangor, 40 ppGoogle Scholar
  15. LfU (Landesanstalt für Umweltschutz Baden-Württemberg) (1985) Immissionsökologisches Wirkungskataster Baden-Württemberg, Jahresbericht 1984 der Landesanstalt für Umweltschutz, Karlsruhe, 209 ppGoogle Scholar
  16. LfU (Landesanstalt für Umweltschutz Baden-Württemberg) (1991) Methoden der Wirkungserhebung in Wald-Dauerbeobachtungsflächen—Schwerpunkt Botanik. Beihefte zu den Veröffentlichungen für Naturschutz und Landschaftspflege in Baden-WürttembergGoogle Scholar
  17. LfU (Landesanstalt für Umweltschutz Baden-Württemberg) (1995) Methoden zur Wirkungserhebung—Ein Methodenhandbuch, 2nd edn. Karlsruhe, 78 ppGoogle Scholar
  18. LfU (Landesanstalt für Umweltschutz Baden-Württemberg) (2005) Signale aus der Natur. 20 Jahre biologische Umweltbeobachtung. KarlsruheGoogle Scholar
  19. Luyssaert S, Raitio H, Mertens J, Lust N (2002) Sampling procedure for the analysis of deciduous trees. J Environ Monit 4:858–864CrossRefGoogle Scholar
  20. Mankovska B, Oszlanyi J (2008) Mosses and foliage of forest tree species as biomonitors of nitrogen pollution. Int J Environ Stud 65:377–387CrossRefGoogle Scholar
  21. Meynen E, Schmithüsen J (1962) Handbuch zur naturräumlichen Gliederung Deutschlands, 2 vol., Bad GodesbergGoogle Scholar
  22. MLR & LUBW (2006) Umweltdaten 2006. Ministerium für Ernährung und Ländlichen Raum Baden-Württemberg, Stuttgart, and Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Karlsruhe, 225 ppGoogle Scholar
  23. Pesch R, Schröder W, Schmidt G, Genssler L (2008) Monitoring nitrogen accumulation in mosses in central European forests. Environ Pollut 155:528–536CrossRefGoogle Scholar
  24. Rappolder M, Schröter-Kermani C, Schädel S, Waller U, Körner W (2007) Temporal trends and spatial distribution of PCDD, PCDF, and PCB in pine and spruce shoots. Chemosphere 67:1887–1896CrossRefGoogle Scholar
  25. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  26. Schröder W, Pesch R, Englert C, Harmens H, Suchara I, Zechmeister HG, Thöni L, Maňkovská B, Jeran Z, Grodzinska K, Alber R (2008) Metal accumulation in mosses across national boundaries: uncovering and ranking causes of spatial variation. Environ Pollut 151:377–388CrossRefGoogle Scholar
  27. Schröter-Kermani C, Kreft D, Schilling B, Herrchen M, Wagner G (2006) Polycyclic aromatic hydrocarbons in pine and spruce shoots—temporal trends and spatial distribution. J Environ Monit 8:806–811CrossRefGoogle Scholar
  28. UN-ECE (2000) Intensive monitoring of forest ecosystems in Europe. Technical Report 2000. Prepared by the Forest Intensive Monitoring Coordinating Institute, 191 ppGoogle Scholar
  29. UN-ECE (2003) Intensive monitoring of forest ecosystems in Europe. Technical Report 2003. Prepared by the Forest Intensive Monitoring Coordinating Institute, 161 ppGoogle Scholar
  30. VDI (2007) VDI 3957 (Part 11). Biological measuring techniques for the determination and evaluation of effects of air pollution on plants (bioindication)—sampling of leaves and needles for a biomonitoring of the accumulation of air pollutants (passive biomonitoring), Verein Deutscher Ingenieure, Düsseldorf, 26 ppGoogle Scholar
  31. Venables W, Ripley B (2002) Modern applied statistics with S, 4th edn. Springer, New YorkGoogle Scholar
  32. Wolff B, Riek W (1996) Deutscher Waldbodenbericht 1996. Ergebnisse der bundesweiten Bodenzustandserhebung im Wald von 1987–1993 (BZE), Band 1. Bundesministerium für Ernährung, Landwirtschaft und Forsten (BML), BFH Eberswalde, 214 ppGoogle Scholar
  33. Wolff B, Wellbrock N (2008) Atmospheric deposition and N status of German Beech (Fagus sylvatica). Forest Int J Environ Stud 65:323–337CrossRefGoogle Scholar
  34. Zhao FJ, Knights JS, Hu ZY, McGrath SP (2003) Stable sulfur isotope ratio indicates long-term changes in sulfur deposition in the Broadbalk experiment since 1845. J Environ Qual 32:33–39CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jürgen Franzaring
    • 1
    Email author
  • Ingo Holz
    • 1
  • Jürgen Zipperle
    • 2
  • Andreas Fangmeier
    • 1
  1. 1.Institute for Landscape and Plant EcologyUniversity of HohenheimStuttgartGermany
  2. 2.Measurements and Nature Conservation Baden-Württemberg (LUBW), Department Cross-Media Environmental MonitoringState Institute for EnvironmentKarlsruheGermany

Personalised recommendations