Environmental Science and Pollution Research

, Volume 17, Issue 2, pp 341–354 | Cite as

Targeting aquatic microcontaminants for monitoring: exposure categorization and application to the Swiss situation

  • Christian W. Götz
  • Christian Stamm
  • Kathrin Fenner
  • Heinz Singer
  • Michael Schärer
  • Juliane Hollender


Background, aim, and scope

Aquatic microcontaminants (MCs) comprise diverse chemical classes, such as pesticides, biocides, pharmaceuticals, consumer products, and industrial chemicals. For water pollution control and the evaluation of water protection measures, it is crucial to screen for MCs. However, the selection and prioritization of which MCs to screen for is rather difficult and complex. Existing methods usually are strongly limited because of a lack of screening regulations or unavailability of required data.

Method and models

Here, we present a simple exposure-based methodology that provides a systematic overview of a broad range of MCs according to their potential to occur in the water phase of surface waters. The method requires input of publicly available data only. Missing data are estimated with quantitative structure–property relationships. The presented substance categorization methodology is based on the chemicals’ distribution behavior between different environmental media, degradation data, and input dynamics.


Seven different exposure categories are distinguished based on different compound properties and input dynamics. Ranking the defined exposure categories based on a chemical’s potential to occur in the water phase of surface waters, exposure categories I and II contain chemicals with a very high potential, categories III and IV contain chemicals with a high potential, and categories V and VI contain chemicals with a moderate to low potential. Chemicals in category VII are not evaluated because of a lack of data. We illustrate and evaluate the methodology on the example of MCs in Swiss surface waters. Furthermore, a categorized list containing potentially water-relevant chemicals is provided.


Chemicals of categories I and III continuously enter surface waters and are thus likely to show relatively steady concentrations. Therefore, they are best suited for water monitoring programs requiring a relatively low sampling effort. Chemicals in categories II and IV have complex input dynamics. They are consequently more difficult to monitor. However, they should be considered if an overall picture is needed that includes contaminants from diffuse sources.


The presented methodology supports compound selection for (a) water quality guidance, (b) monitoring programs, and (c) further research on the chemical’s ecotoxicology. The results from the developed categorization procedure are supported by data on consumption and observed concentrations in Swiss surface waters. The presented methodology is a tool to preselect potential hazardous substances based on exposure-based criteria for policy guidance and monitoring programs and a first important step for a detailed risk assessment for potential microcontaminants.


Biocides Micropollutants Chemical risk assessment Emerging pollutants Pesticides Pharmaceuticals Priority substances Prioritization Surface water 



We acknowledge the FOEN for funding of the project and providing the Swiss micropollutants monitoring database and Damian Helbling of Eawag for reviewing and commenting on this paper.

Supplementary material

11356_2009_167_MOESM1_ESM.pdf (270 kb)
ESM 1List of 250 candidate substances, according to exposure categories, logKOW values, and logKAW values, and a table with substance classes and the according input dynamics are provided. (PDF 269 kb)


  1. AWEL (2008) Monitoring of micropollutants. Reports. http://www.gewaesserqualitaet.zh.ch
  2. Baun A, Eriksson E et al (2006) A methodology for ranking and hazard identification of xenobiotic organic compounds in urban stormwater. Sci Total Environ 370:29–38CrossRefGoogle Scholar
  3. Benner J, Salhi E et al (2008) Ozonation of reverse osmosis concentrate: kinetics and efficiency of beta blocker oxidation. Water Res 42(12):3003–3012CrossRefGoogle Scholar
  4. Besse J-P, Garric J (2008) Human pharmaceuticals in surface waters: implementation of a priorization methodology and application to the French situation. Toxicol Lett 176:104–123CrossRefGoogle Scholar
  5. Blüm W, McArdell CS et al (2005) Organische Spurenstoffe im Grundwasser des Limmattales: Ergebnisse der Untersuchungskampagne 2004. Baudirektion Kanton Zürich, AWEL, ZürichGoogle Scholar
  6. Bogdal C, Schmid P et al (2008) Sediment record and atmospheric deposition of brominated flame retardants and organochlorine compounds in Lake Thun, Switzerland: lessons from the past and evaluation of the present. Environ Sci Technol 42(18):6817–6822CrossRefGoogle Scholar
  7. Brauch H, Fleig M et al (2006) Vorkommen und Bewertung von Arzneimittelrückständen in Rhein und Main. TZW-Schriftenreihe Band 29Google Scholar
  8. Brown TN, Wania F (2008) Screening chemicals for the potential to be persistent organic pollutants: a case study of Arctic contaminants. Environ Sci Technol 42(14):5202–5209CrossRefGoogle Scholar
  9. Bürgi D, Knechtenhofer L, Meier I, Giger W (2009) Prioritization of biocidal active substances based on the assessment of environmental risks in natural waters in Switzerland. Umweltwiss Schadst Forsch 21:27–35CrossRefGoogle Scholar
  10. Carlsson C, Johansson AK et al (2006) Are pharmaceuticals potent environmental pollutants? Part I: environmental risk assessments of selected active pharmaceutical ingredients. Sci Total Environ 364(1–3):67–87Google Scholar
  11. Chèvre N, Loepfe C et al (2006) Including mixtures in the determination of water quality criteria for herbicides in surface water. Environ Sci Technol 40(2):426–435CrossRefGoogle Scholar
  12. CIPEL (2008 ) Der Genfersee und sein Einzugsgebiet in einigen Daten. http://www.cipel.org/sp/article75.html
  13. Daughton CG (2004) PPCPs in the environment: future research beginning with the end always in mind. In: Kümmerer K (ed) Pharmaceuticals in the environment, 2nd edn. Springer, New York, pp 463–495Google Scholar
  14. Edder P, Ortelli D et al (2007) Metals and organic micropollutants in geneva lake waters. Rapp. Comm. int. prot. eaux Léman contre pollut., Campagne 2006, 59–81Google Scholar
  15. Escher BI, Hermens JLM (2002) Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects. Environ Sci Technol 36(20):4201–4217CrossRefGoogle Scholar
  16. European-Commission (2006) Commission proposal COM (2006) 397 final: proposed priority substances directive. L397.Google Scholar
  17. European-Parliament (2004) Regulation (EC) No 850/2004 of the European parliament and of the council on persistent organic pollutants and amending Directive 79/117/EECGoogle Scholar
  18. Fenner K, Canonica S et al (2006) Developing methods to predict chemical fate and effect endpoints for use within REACH. Chimia 60(10):1–7CrossRefGoogle Scholar
  19. FOEN (2008a) Swiss Federal Office for the Environment (FOEN): Project Micropoll. Database with Swiss monitoring data, FOEN, ZurichGoogle Scholar
  20. FOEN (2008) Swiss Federal Office for the Environment (FOEN): Hydrological foundations and data, http://www.hydrodaten.admin.ch
  21. Freitas L, Götz CW et al (2004) Quantification of the new triketone herbicides, sulcotrione and mesotrione, and other important herbicides and metabolites, at the ng/l level in surface waters using liquid chromatography–tandem mass spectrometry. J Chromatogr A 1028(2):277–286CrossRefGoogle Scholar
  22. Fromme H, Otto T et al (2001) Polycyclic musk fragrances in different environmental compartments in Berlin (Germany). Water Res 35(1):121–128CrossRefGoogle Scholar
  23. Giger W, Schaffner C et al (2006) Benzotriazole and tolytriazole as aquatic contaminants: 1. input and occurrence in rivers and lakes. Environ Sci Technol 40:7186–7192CrossRefGoogle Scholar
  24. Göbel A, Thomsen A et al (2005) Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environ Sci Technol 39(11):3981–3989CrossRefGoogle Scholar
  25. Götz CW, Scheringer M et al (2007) Alternative approaches for modeling gas–particle partitioning of semivolatile organic chemicals: model development and comparison. Environ Sci Technol 41(4):1272–1278CrossRefGoogle Scholar
  26. Hollerbach A (1984) Organic-matter in surface sediments of lake constance. Naturwissenschaften 71(1):42–43CrossRefGoogle Scholar
  27. Huntscha S, Singer H et al (2008) Input dynamics and fate in surface water of the herbicide metolachlor and of its highly mobile transformation product metolachlor ESA. Environ Sci Technol 42(15):5507–5513CrossRefGoogle Scholar
  28. Huset CA, Chiaia AC et al (2008) Occurrence and mass flows of fluorochemicals in the Glatt Valley watershed, Switzerland. Environ Sci Technol 42(17):6369–6377CrossRefGoogle Scholar
  29. IKSR (2006) Rheinüberwachungsstation Weil am Rhein, Jahresbericht. Im Auftrag vom Umweltministerium Baden-Württemberg und dem Schweizerischen Bundesamt für Umwelt (BAFU)Google Scholar
  30. IMS (2005) IMS Health GmbH. Hergiswil, Switzerland; http://www.ihaims.ch, last visit to website: 14.08.2006, info@ch.imshealth.com
  31. Jones OAH, Voulvoulis N et al (2002) Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res 36(20):5013–5022CrossRefGoogle Scholar
  32. Joss A, Zabczynski S et al (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40:1686–1696CrossRefGoogle Scholar
  33. Joss A, Siegrist H et al (2008) Are we about to upgrade wastewater treatment for removing organic micropollutants? Water Sci Technol 57(2):251–255CrossRefGoogle Scholar
  34. Leu C, Singer H et al (2004) Simultaneous assessment of sources, processes, and factors influencing herbicide losses to surface waters in a small agricultural catchment. Environ Sci Technol 38(14):3827–3834CrossRefGoogle Scholar
  35. Lienert J, Gudel K et al (2007) Screening method for ecotoxicological hazard assessment of 42 pharmaceuticals considering human metabolism and excretory routes. Environ Sci Technol 41(12):4471–4478CrossRefGoogle Scholar
  36. Mackay D (2001) Multimedia environmental models, the fugacity approach. Lewis, Boca RatonGoogle Scholar
  37. Mackay D, Paterson S (1991) Evaluating the multimedia fate of organic chemicals: a level III fugacity model. Environ Sci Technol 25:427–436CrossRefGoogle Scholar
  38. Nguyen TH, Goss KU et al (2005) Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environ Sci Technol 39(4):913–924CrossRefGoogle Scholar
  39. Ort C, Hollender J et al (2009) Model-based evaluation of reduction strategies for micropollutants from wastewater treatment plants in complex river networks. Environ Sci Technol. doi:10.1021/es802286v Google Scholar
  40. Peck AM, Hornbuckle KC (2004) Synthetic musk fragrances in Lake Michigan. Environ Sci Technol 38(2):367–372CrossRefGoogle Scholar
  41. Reemtsma T, Weiss S et al (2006) Polar pollutants entry into the water cycle by municipal wastewater: a European perspective. Environ Sci Technol 40(17):5451–5458CrossRefGoogle Scholar
  42. Scheringer M (1996) Persistence and spatial range as endpoints of an exposure-based assessment of organic chemicals. Environ Sci Technol 30(5):1652–1659CrossRefGoogle Scholar
  43. Schneider AR, Porter ET et al (2007) Polychlorinated biphenyl release from resuspended Hudson River sediment. Environ Sci Technol 41(4):1097–1103CrossRefGoogle Scholar
  44. Schwarzenbach RP, Gschwend PM et al (2003) Environmental organic chemistry. Wiley Interscience, New JerseyGoogle Scholar
  45. Schwarzenbach RP, Escher BI et al (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077CrossRefGoogle Scholar
  46. SGCI (2006) Pflanzenschutzmittelstatistik Schweiz. SCGI Chemie Pharma Schweiz, ZurichGoogle Scholar
  47. Stamm C, Alder A et al (2008) Spatial and temporal patterns of pharmaceuticals in the aquatic environment: a review. Geography Compass 2:920–955CrossRefGoogle Scholar
  48. Stamm C, Siber R et al (2006) Monitoring von Pestizidbelastungen in Schweizer Oberflächengewässern. gwa 8/2006Google Scholar
  49. Stamm C, Fluhler H et al (1998) Preferential transport of phosphorus in drained grassland soils. J Environ Qual 27(3):515–522CrossRefGoogle Scholar
  50. Stoob K, Singer H et al (2005) Fully automated online solid phase extraction coupled directly to liquid chromatography–tandem mass spectrometry—quantification of sulfonamide antibiotics, neutral and acidic pesticides at low concentrations in surface waters. J Chromatogr A 1097(1–2):138–147CrossRefGoogle Scholar
  51. Ternes T (2007) The occurrence of micopollutants in the aquatic environment: a new challenge for water management. Water Sci Technol 55(12):327–332CrossRefGoogle Scholar
  52. U.S.EPA (2007) Estimation program interface; EPI Suite v3.20Google Scholar
  53. Wegmann F, Cavin L et al (2007) A software tool for screening chemicals for persistence and long range transport potential. Environ Model Softw 24:228–237CrossRefGoogle Scholar
  54. Wilkinson H, Sturdy L et al (2007) Prioritising chemicals for standard derivation under Annex VIII of the Water Framework Directive. Science report—SC040038/SRGoogle Scholar
  55. Zennegg M, Kohler M et al (2007) The historical record of PCB and PCDD/F deposition at Greifensee, a lake of the Swiss plateau, between 1848 and 1999. Chemosphere 67(9):1754–1761CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Christian W. Götz
    • 1
  • Christian Stamm
    • 1
  • Kathrin Fenner
    • 1
    • 2
  • Heinz Singer
    • 1
  • Michael Schärer
    • 3
  • Juliane Hollender
    • 1
  1. 1.Eawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
  2. 2.Institute of Biogeochemistry and Pollutant Dynamics (IBP)ETH ZurichZurichSwitzerland
  3. 3.Water DivisionSwiss Federal Office for the Environment (FOEN)BernSwitzerland

Personalised recommendations