Environmental Science and Pollution Research

, Volume 16, Issue 5, pp 531–538

DOC removal paradigms in highly humic aquatic ecosystems

  • Vinicius F. Farjalla
  • André M. Amado
  • Albert L. Suhett
  • Frederico Meirelles-Pereira
HUMIC SUBSTANCES • REVIEW SERIES

Abstract

Background, aim, and scope

Dissolved humic substances (HS) usually comprise 50–80% of the dissolved organic carbon (DOC) in aquatic ecosystems. From a trophic and biogeochemical perspective, HS has been considered to be highly refractory and is supposed to accumulate in the water. The upsurge of the microbial loop paradigm and the studies on HS photo-degradation into labile DOC gave rise to the belief that microbial processing of DOC should sustain aquatic food webs in humic waters. However, this has not been extensively supported by the literature, since most HS and their photo-products are often oxidized by microbes through respiration in most nutrient-poor humic waters. Here, we review basic concepts, classical studies, and recent data on bacterial and photo-degradation of DOC, comparing the rates of these processes in highly humic ecosystems and other aquatic ecosystems.

Materials and methods

We based our review on classical and recent findings from the fields of biogeochemistry and microbial ecology, highlighting some odd results from highly humic Brazilian tropical lagoons, which can reach up to 160 mg C L−1.

Results and discussion

Highly humic tropical lagoons showed proportionally lower bacterial production rates and higher bacterial respiration rates (i.e., lower bacterial growth efficiency) than other lakes. Zooplankton showed similar δ13C to microalgae but not to humic DOC in these highly humic lagoons. Thus, the data reviewed here do not support the microbial loop as an efficient matter transfer pathway in highly humic ecosystems, where it is supposed to play its major role.

In addition, we found that some tropical humic ecosystems presented the highest potential DOC photo-chemical mineralization (PM) rates reported in the literature, exceeding up to threefold the rates reported for temperate humic ecosystems. We propose that these atypically high PM rates are the result of a joint effect of the seasonal dynamics of allochthonous humic DOC input to these ecosystems and the high sunlight incidence throughout the year. The sunlight action on DOC is positive to microbial consumption in these highly humic lagoons, but little support is given to the enhancement of bacterial growth efficiency, since the labile photo-chemical products are mostly respired by microbes in the nutrient-poor humic waters.

Conclusions

HS may be an important source of energy for aquatic bacteria in humic waters, but it is probably not as important as a substrate to bacterial growth and to aquatic food webs, since HS consumption is mostly channeled through microbial respiration. This especially seems to be the case of humic-rich, nutrient-poor ecosystems, where the microbial loop was supposed to play its major role. Highly humic ecosystems also present the highest PM rates reported in the literature. Finally, light and bacteria can cooperate in order to enhance total carbon degradation in highly humic aquatic ecosystems but with limited effects on aquatic food webs.

Recommendations and perspectives

More detailed studies using C- and N-stable isotope techniques and modeling approaches are needed to better understand the actual importance of HS to carbon cycling in highly humic waters.

Keywords

Bacterioplankton Coastal lagoons Dissolved humic substances Dissolved organic carbon Humic ecosystems Microbial loop Photochemical mineralization Photo-degradation Photo-oxidation 

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Vinicius F. Farjalla
    • 1
    • 2
  • André M. Amado
    • 1
    • 3
  • Albert L. Suhett
    • 1
    • 4
  • Frederico Meirelles-Pereira
    • 1
  1. 1.Instituto de Biologia, Departamento de Ecologia, CCS, Ilha do FundãoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de MacaéMacaéBrazil
  3. 3.Centro de Biociências, Departamento de Oceanografia e LimnologiaUniversidade Federal do Rio Grande do NorteNatalBrazil
  4. 4.Instituto de Biologia, Departamento de Ecologia, CCS, Ilha do Fundão, Programa de Pós-Graduação em Ecologia (PPGE/UFRJ)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations