Advertisement

Experimental research on recolonisation with Anemone nemorosa of the beech forests of the Ruhr district (Germany) floristically impoverished by air pollution

  • Rüdiger Wittig
Area 5.3 • Ecosystem Restoration • Research Article

Abstract

Background, aim, and scope

High SO2 concentrations as have been observed over decades in the Ruhr district lead to a remarkable reduction of leaf area in the majority of the characteristic broad-leafed herbs of the Central European beech forests even after only a few months of experimental fumigation. Thus, it is no wonder in the time of high SO2 pollution, e.g., in the town of Herne (centre of the Ruhr district), that there was not a single beech forest hosting, for instance, Viola reichenbachiana or Anemone nemorosa. As air quality has improved very much over some decades in the Ruhr district, one can expect a recolonisation of the beech forests by the species of former time characteristic for the herb layer. However, one has to consider that only the air pollution was reduced, while soil acidification and contamination with heavy metals and PAH are, on the short run, irreversible. That is why experiments were carried out, considering the question as to whether recolonisation of the forests of the Ruhr district by the aforementioned species is possible and why such a recolonisation up to now has not occurred.

Materials and methods

The experiments were carried out in a beech forest situated in the centre of the Ruhr district in the City of Herne. The wood anemone (A. nemorosa) was chosen as test plant because of its high frequency in beech forests on loess soils outside the Ruhr district, and its absence in beech forests in the Ruhr district. The experiments with A. nemorosa were carried out in three variants with different soils: (a): soil of the local forests (R); (b): soil of the local forests whose soot layer was removed (r); (c): imported soil from a clean air region far away from the Ruhr district (Odenwald).

Results

Survival of rhizomes of A. nemorosa is possible for some years in the soils of the Ruhr district; however, the establishment of a population could not be achieved. The results obtained by the imported soil show that it is no longer air pollution, but the soil which prevents the establishment of a population. Sexual reproduction is rather impossible because of the thick litter layer with which all of the Ruhr district’s beech forests are covered.

Discussion

With respect to the unfavourable chemistry of the soil of the Ruhr district and in consideration of the unfavourable attributes of the soot layer, the author expected the following order of the development of shoot numbers: O > r > R. However, the result is: O > R > r. In contrast to the expected result, the soot layer has no negative but slightly positive effects on the implanted rhizomes. A possible explanation is that the soot layer, which is situated immediately below the top soil, prevents the top soil from drying up and thus even protects the rhizomes from desiccation. Also, the possibility has to be considered that the soot layer functions as a nutrient storage area.

Conclusions

At present, a survival of the rhizomes of A. nemorosa in the soils of the Ruhr district is temporarily possible but does not lead to the establishment of a permanent population. This only can be achieved by additional sexual reproduction. However, the thick litter layer present in all beech forests of the Ruhr district prevents the establishment of seedlings, i.e., it does not allow sexual reproduction to contribute to the population. The soot layer situated below the litter layer represents a second hindrance for germination. Other than seedlings, rhizomes are not negatively affected by the soot layer but even a slight stabilisation has to be stated. As a reason for this slightly positive effect, a protection of the upper mineral soil from desiccation by the hydrophob soot layer has to be considered. Secondly, the soot layer may serve as a nutrient storage which is of particular importance in acid soils, because acidification generally leads to a leeching of nutrients. To answer these questions, detailed further research is necessary.

Recommendations and perspectives

In order to restore the formerly rich herbaceous layer of the forests of the Ruhr district, experiments (removal of the litter layer; liming; ploughing) should be carried out at broad-scale to solve the question of how the strong negative effects of the established thick raw humus layer can be reduced or even be avoided. When the problem of the humus layer is solved, the beech forests of the Ruhr district today highly impoverished in species will become a vivid ecosystem, rich in flowering herbaceous species and thus much more attractive for the people of the Ruhr district than at present.

Keywords

Anemone nemorosa Beech forests Implantation experiments Long-term observations Recolonisation Ruhr district Soot layer 

Notes

Acknowledgements

The author is indebted to Dr. Brooks Ferebee (Institute for Stochastics and Mathematic Informatics, J.W. Goethe-University, Frankfurt) for valuable help with the statistics and to two unknown referees for their helpful comments and suggestions. Financial support was given by the Gesamtverband des Deutschen Steinkohlenbergbaus.

References

  1. Berteigne M, Rose C, Gerard J, Dizengremel P (1989) Effects of polycylclic hydrocarbons on the forest ecosystem and woody plants. Ann Sci For 46(Suppl):561–564CrossRefGoogle Scholar
  2. Böhling W (1995) Zur pedoökologischen Indikatorfunktion der Vegetation des Stadtwaldes von Hannover. Karlsruher Ber Gegraph Geoökol 7:75Google Scholar
  3. Burrichter E (1973) Die potentielle natürliche Vegetation in der Westfälischen Bucht. Siedlung Landschaft Westfalen 8:73Google Scholar
  4. Burrichter E, Wittig R (1977) Der Flattergras-Buchenwald in Westfalen. Mitt flor-soz Arbeitsgem N.F. 19/20:377–382Google Scholar
  5. Cowie NR, Watkinson AR, Sutherland WJ (1995) Modelling the growth dynamics of the clonal herb Anemone nemorosa L. in an ancient coppice wood. Abstracta Botanica 19:35–49Google Scholar
  6. Eriksson O (1995) Seedling recruitment in deciduous forest herbs: the effects of litter, soil chemistry and seed bank. Flora 190:65–70Google Scholar
  7. Ernst WHO (1983) Population biology and mineral nutrition of Anemone nemorosa with emphasis on its parasitic fungi. Flora 173:335–348Google Scholar
  8. Fangmeier A, Steubing L (1989) Auswirkungen gasförmiger Immissionen auf Pflanzengesellschaften des WaldbodensErgebnisse vierjähriger Begasungsversuche in Open-Tops. Verhandl Ges Ökol 17:513–527Google Scholar
  9. Glahn H (1981) Über den Flattergras- oder Sauerklee-Buchenwald (Oxali-Fagetum) der niedersächsischen und holsteinischen Moränenlandschaften. Drosera 2:57–74Google Scholar
  10. Holderegger R (1996) Effects of litter removal on the germination of Anemone nemorosa L. Flora 191:175–178Google Scholar
  11. Holderegger R, Stehlik I, Schneller JJ (1998) Estimation of the relative importance of sexual and vegetative reproduction in the clonal woodland herb Anemone nemorosa. Oecologia 117:105–107CrossRefGoogle Scholar
  12. Honnay O, Hermy M, Coppin P (1999) Impact of habitat quality on forest plant species colonization. Forest Ecol Management 115(2):157–170CrossRefGoogle Scholar
  13. John MK (1971) Influence of soil characteristics on adsorption and desorption of cadmium. Environ Lett 2:173–179CrossRefGoogle Scholar
  14. Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Boca Raton, Ann Arbor, LondonGoogle Scholar
  15. Kuttler W (1998) Stadtklima. In: Sukopp H, Wittig R (eds) Stadtökologie. Fischer, Stuttgart, pp 125–167Google Scholar
  16. Liphard KG (1992) Bestimmung von polycyclischen aromatischen Kohlenwasserstoffen (PAK) in Böden mit der HPLC. In: KVR Kommunalverband Ruhrgebiet (ed) Polycyclische aromatische Kohlenwasserstoffe in Böden und Pflanzen. Band 1: Untersuchungsverfahren, Essen, pp 17–29Google Scholar
  17. LIS (Landesanstalt für Immissionsschutz, Nordrhein-Westfalen (ed) (1992) Berichte für die Luftqualität in Nordrhein-Westfalen. Kontinuierliche telemetrische Luftqualitätsmessungen. TEMES-Jahresbericht 1991Google Scholar
  18. Loos GH (1997) Zur Taxonomie der Goldnesseln (Lamium L. subgenus Galeobdolon (ADANS.) Aschers.). Flor Rundbr 31(1):39–50Google Scholar
  19. MAGS (Ministerium für Arbeit, Gesundheit und Soziales des Landes NW) (ed) (1980) Luftreinhalteplan Ruhrgebiet Mitte 1980–1984. Selbstverlag, p 468Google Scholar
  20. Neite H (1987) Untersuchungen über Veränderungen in den Buchenschürzen der Kalk-Buchenwälder des Teutoburger Waldes. Diss Bot 108:85Google Scholar
  21. Neite H, Wittig R (1989) Blei- und Zinkgehalte in Böden und Pflanzen einiger Buchenwälder Nordrhein-Westfalens. Verhandl Ges Ökol 18:425–429Google Scholar
  22. Neite H, Wittig R (1990) Vorräte und Mobilität von Schwermetallen in nordrhein-westfälischen Waldböden. VDI Ber 837:899–915Google Scholar
  23. Shirreffs DA (1985) Biological flora of the British Isles. J Ecol 73:1005–1020CrossRefGoogle Scholar
  24. Shirreffs DA, Bell AD (1984) Rhizome growth and clone development in Anemone nemorosa L. Ann Bot 54:315–324Google Scholar
  25. Sims RC, Overcash MR (1983) Fate of polynuclear aromatic compounds (PAHs) in soil-plant systems. Residue Rev 88:1–68Google Scholar
  26. Stratmann H, Buck M, Herpertz E (1965) Untersuchungen über Schwefeldioxyd- und Staubimmissionen im nördlichen Ruhrgebiet. Schr R Landesanstalt Immissions-und Bodennutzungsschutz Land Nordrhein-Westfalen 1:52–58Google Scholar
  27. Sydes C, Grime JP (1981) Effects of tree leaf litter on herbaceous vegetation in deciduous woodland. J Ecol 69:237–248CrossRefGoogle Scholar
  28. Tyler G (1976) Soil factors controlling metal ion absorption in the wood anemone Anemone nemorosa. OIKOS 27:71–80CrossRefGoogle Scholar
  29. Ulrich B (1983) Soil acidity and its relations to acid deposition. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. D Reidel Publishing Company, Dordrecht-Boston-London, pp 127–146Google Scholar
  30. Werner W, Wittig R (1986) Die Böden des Flattergras-Buchenwaldes der Westfälischen Bucht. Abhandl Westf Landesmus Naturkde 48(2/3):317–340Google Scholar
  31. Wittig R (1999) Verbreitung und Standorte von Anemone nemorosa und Polygonatum multiflorum in Buchenwäldern des Ruhrgebietes. Tuexenia 19:173–177Google Scholar
  32. Wittig R, Werner W (1986) Beiträge zur Belastungssituation des Flattergras-Buchenwaldes der Westfälischen Bucht—eine Zwischenbilanz. Düsseldorfer Geobot Kolloq 3:33–70Google Scholar
  33. Wittig R, Werner W (1989) Buchenwälder im Ruhrgebiet und in der Westfälischen Bucht. Eine vergleichende Untersuchung. Verhandl Ges Ökol 18:473–482Google Scholar
  34. Wittig R, Ballach H-J, Kuhn A (2003) Exposure of the roots of Populus nigra L. cv. Loenen to PAHs and its effect on growth and water Balance. Eviron Sci Pollut Res 10:235–244CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Ecology and GeobotanyInstitute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe-UniversityFrankfurt a.M.Germany

Personalised recommendations