Advertisement

High uncertainties detected in the wetlands distribution of the Qinghai–Tibet Plateau based on multisource data

  • Jieyi Wang
  • Qiuan ZhuEmail author
  • Yan Yang
  • Xian Zhang
  • Jiang Zhang
  • Minshu Yuan
  • Huai Chen
  • Changhui Peng
Original Paper
  • 33 Downloads

Abstract

Twenty wetland-related data products (including remote sensing datasets, compilation datasets and model simulation datasets) were collected to evaluate the characteristics (area and distribution) of the wetlands in the Qinghai–Tibet Plateau (QTP) during four stages (1980s, 1990s, 2000s, and 2010s). We conducted a statistical analysis of the wetland areas from different datasets and compared the pixel consistency regarding wetland spatial distribution. The results showed that high uncertainty exists in the wetland area and low consistency exists in the distribution among the different datasets. The wetland area in the QTP ranged from 1.5 × 104 to 121.16 × 104 km2. In the remote sensing datasets, the wetland area in the QTP ranged from 3.25 × 104 to 11.28 × 104 km2, the calculated area was between 1.50 × 104 and 72.21 × 104 km2 in the compilation datasets, and the area simulated from model datasets was between 3.81 × 104 and 121.16 × 104 km2. For the total wetland area in the QTP, the uncertainty in the measured datasets was lower than that in the model simulation datasets. However, for the distribution of wetlands, the measured datasets were more inconsistent than the model datasets. In the measured datasets, as the pixel consistency increased, the corresponding probability throughout the area decreased. The probability of achieving 75% consistency was less than 2%, and was 0.61%, 0.35%, 1%, and 1.43% in the four stages, respectively. In the model products, the probability of achieving 75% consistency was 40.39%. Our study will enrich the global wetland database and contribute to the establishment of a plateau wetland information system, which will be significant for the protection and management of wetlands.

Keywords

Wetland Qinghai–Tibet Plateau Uncertainty Wetland area Wetland spatial distribution 

Notes

Acknowledgements

This study was financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA2005010404), the National Natural Science Foundation of China (41571081), and the National Key R&D Program of China (2016YFC0501804, 2016YFC0500203).

References

  1. Arino O, Bicheron P, Achard F, Latham J, Witt R, Weber JL (2008) GLOBCOVER the most detailed portrait of Earth. Esa Bull Eur Space Agency 136:24–31Google Scholar
  2. Aselmann I, Crutaen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358CrossRefGoogle Scholar
  3. Bartholome E, Belward AS (2005) GLC2000: a new approach to global land cover mapping from Earth observation data. Int J Remote Sens 26:1959–1977CrossRefGoogle Scholar
  4. Chen J, Chen J, Liao A, Cao X, Chen L, Chen X, He C, Han G, Peng S, Lu M, Zhang W, Tong X, Mills J (2015) Global land cover mapping at 30 m resolution: a POK-based operational approach. Isprs J Photogramm Remote Sens 103:7–27CrossRefGoogle Scholar
  5. Costanza R, Darge R, Groot RD, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, Oneill RV, Paruelo J, Raskin RG, Sutton P, Vanden Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  6. Davidson NC (2014) How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res 65:934–941CrossRefGoogle Scholar
  7. Deng C, Zhang W (2018) Spatiotemporal distribution and the characteristics of the air temperature of a river source region of the Qinghai-Tibet Plateau. Environ Monit Assess 190(6):368PubMedCrossRefPubMedCentralGoogle Scholar
  8. Dixon MJR, Loh J, Davidson NC, Beltrame C, Freeman R, Walpole M (2016) Tracking global change in ecosystem area: the Wetland Extent Trends index. Biol Cons 193:27–35CrossRefGoogle Scholar
  9. Fan Y, Miguez-Macho G (2011) A simple hydrologic framework for simulating wetlands in climate and earth system models. Clim Dyn 37:253–278CrossRefGoogle Scholar
  10. Finlayson M, Cruz RD, Davidson N, Alder J, Cork S, Groot RSD et al (2005) Millennium ecosystem assessment: ecosystems and human well-being: wetlands and water synthesis. Data Fus Concepts Ideas 656:87–98Google Scholar
  11. Finlayson CM, Clarke SJ, Davidson NC, Gell P (2016) Role of palaeoecology in describing the ecological character of wetlands. Mar Freshw Res 67(6):687CrossRefGoogle Scholar
  12. Friedl MA, McIver DK, Hodges JCF, Zhang X, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf C (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83:287–302CrossRefGoogle Scholar
  13. Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X (2010) MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114:168–182CrossRefGoogle Scholar
  14. Giri C, Zhu ZL, Reed B (2005) A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote Sens Environ 94:123–132CrossRefGoogle Scholar
  15. Hansen MC, Reed B (2000) A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products. Int J Remote Sens 21:1365–1373CrossRefGoogle Scholar
  16. Hu S, Niu Z, Chen Y, Li L, Zhang H (2017) Global wetland datasets: a review. Wetlands 37:807–817CrossRefGoogle Scholar
  17. Hulme M, Doherty R, Ngara T, New M (2005) Global warming and african climate change: a reassessment. In: Climate Change and Africa. pp 29–40.  https://doi.org/10.1017/CBO9780511535864 Google Scholar
  18. Latifovic R, Olthof I (2004) Accuracy assessment using sub-pixel fractional error matrices of global land cover products derived from satellite data. Remote Sens Environ 90:153–165CrossRefGoogle Scholar
  19. Lehner B, Doll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22CrossRefGoogle Scholar
  20. Li H, Xiao P, Feng X, Yang Y, Wang L, Zhang W, Wang X, Feng W, Chang X (2017) Using land long-term data records to map land cover changes in China over 1981–2010. Ieee J Select Top Appl Earth Obs Remote Sens 10:1372–1389CrossRefGoogle Scholar
  21. Liang L, Gong P (2010) An assessment of MODIS collection 5 global land cover product for biological conservation studies. In: 18th international conference on geoinformatics. IEEE, 2010, pp 1–6Google Scholar
  22. Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21:1303–1330CrossRefGoogle Scholar
  23. Lu M, Wu W, Zhang L, Liao A, Peng S, Tang H (2016) A comparative analysis of five global cropland datasets in China. Sci China Earth Sci 59:2307–2317CrossRefGoogle Scholar
  24. Luo L (2005) Analysis of climatic background of wetlands degradation in the Qinghai–Xizang Plateau. Wetl Sci 3:190–199Google Scholar
  25. Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem Cycles 1:61–86CrossRefGoogle Scholar
  26. McCallum I, Obersteiner M, Nilsson S, Shvidenko A (2006) A spatial comparison of four satellite derived 1 km global land cover datasets. Int J Appl Earth Obs Geoinf 8:246–255CrossRefGoogle Scholar
  27. Melton JR, Wania R, Hodson EL, Poulter B, Ringeval B, Spahni R, Bohn T, Avis CA, Beerling DJ, Chen G, Eliseev AV, Denisov SN, Hopcroft PO, Lettenmaier DP, Riley WJ, Singarayer JS, Subin ZM, Tian H, Zurcher S, Brovkin V, van Bodegom PM, Kleinen T, Yu ZC, Kaplan JO (2013) Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10:753–788CrossRefGoogle Scholar
  28. Mitra S, Wassmann R, Vlek PLG (2005) An appraisal of global wetland area and its organic carbon stock. Curr Sci 88:25–35Google Scholar
  29. National Research Council (1995) Wetlands: characteristics and boundaries. National Academies Press, pp 901–902Google Scholar
  30. Nakaegawa T (2012) Comparison of water-related land cover types in six 1-km global land cover datasets. J Hydrometeorol 13:649–664CrossRefGoogle Scholar
  31. Neumann K, Herold M, Hartley A, Schmullius C (2007) Comparative assessment of CORINE2000 and GLC2000: spatial analysis of land cover data for Europe. Int J Appl Earth Obs Geoinf 9:425–437CrossRefGoogle Scholar
  32. Niu Z, Gong P, Cheng X, Guo J, Wang L, Huang H, Shen S, Wu Y, Wang X, Wang X, Ying Q, Liang L, Zhang L, Wang L, Yao Q, Yang Z, Guo Z, Dai Y (2009) Geographical characteristics of China’s wetlands derived from remotely sensed data. Sci China Ser D Earth Sci 52:723–738CrossRefGoogle Scholar
  33. Niu Z, Shan Y, Zhang H (2012a) Accuracy assessment of wetland categories from the GlobCover2009 data over China. Wetl Sci 10:389–395Google Scholar
  34. Niu Z, Zhang H, Wang H, Yao W, Zhou D, Zhao K, Zhao H, Li N, Huang H, Li C, Yang J, Liu C, Liu S, Wang L, Li Z, Yang Z, Qiao F, Zheng Y, Chen Y, Sheng Y, Gao X, Zhu W, Wang W, Wang H, Weng Y, Zhuang D, Liu J, Luo Z, Cheng X, Guo Z, Gong P (2012b) Mapping wetland changes in China between 1978 and 2008. Chin Sci Bull 57:2813–2823CrossRefGoogle Scholar
  35. Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetl Ecol Manag 10:381–402CrossRefGoogle Scholar
  36. Prigent C, Papa F, Aires F, Rossow WB, Matthews E (2007) Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J Geophys Res Atmos 112:1103–1118CrossRefGoogle Scholar
  37. Russi D, Brink PT, Badura T et al (2013) The economics of ecosystems and biodiversity for water and wetlands. IEEP, LondonGoogle Scholar
  38. Schroeder R, Rawlins MA, McDonald KC, Podest E, Zimmermann R, Kueppers M (2010) Satellite microwave remote sensing of North Eurasian inundation dynamics: development of coarse-resolution products and comparison with high-resolution synthetic aperture radar data. Environ Res Lett 5(1):015003CrossRefGoogle Scholar
  39. Stillwell-Soller LM, Klinger LF, Pollard D (1995) The Global distribution of freshwater wetlands. https://pdfs.semanticscholar.org/5c32/cf90cbb47808bc1c14d27d746c0f709a7d56.pdf. Accessed 16 Sept 2019
  40. Sukhdev P, Kumar P (2008) The economics of ecosystems and biodiversity (TEEB). European Communities, Wesseling, GermanyGoogle Scholar
  41. Sun H, Zheng D, Yao T, Zhang Y (2012) Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geogr Sin 67:3–12Google Scholar
  42. Tateishi R, Uriyangqai B, Al-Bilbisi H, Ghar MA, Tsend-Ayush J, Kobayashi T, Kasimu A, Hoan NT, Shalaby A, Alsaaideh B, Enkhzaya T, Gegentana Y, Sato HP (2011) Production of global land cover data—GLCNMO. Int J Digit Earth 4:22–49CrossRefGoogle Scholar
  43. Tuanmu MN, Jetz W (2014) A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob Ecol Biogeogr 23:1031–1045CrossRefGoogle Scholar
  44. Wang G, Yuanshou L, Wang Y, Chen L (2007) Typical alpine wetland system changes on the Qinghai–Tibet Plateau in recent 40 years. Acta Geogr Sin 62:481–491Google Scholar
  45. Wania R, Melton JR, Hodson EL, Poulter B, Ringeval B, Spahni R, Bohn T, Avis CA, Chen G, Eliseev AV, Hopcroft PO, Riley WJ, Subin ZM, Tian H, van Bodegom PM, Kleinen T, Yu ZC, Singarayer JS, Zurcher S, Lettenmaier DP, Beerling DJ, Denisov SN, Prigent C, Papa F, Kaplan JO (2013) Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geosci Model Dev 6:617–641CrossRefGoogle Scholar
  46. Wu W, Shibasaki R, Yang P, Ongaro L, Zhou Q, Tang H (2008) Validation and comparison of 1 km global land cover products in China. Int J Remote Sens 29:3769–3785CrossRefGoogle Scholar
  47. Xie G, Chun L, Leng Y, Zheng D, Shuang L (2003) Ecological assets valuation of the Tibetan Plateau. J Nat Resour 18:189–196Google Scholar
  48. Xing Y, Jiang Q, Wenqing L (2009) Landscape spatial patterns changes of the wetland in Qinghai–Tibet Plateau. Ecol Environ Sci 18:1010–1015Google Scholar
  49. Xu X, Tian H (2012) Methane exchange between marshland and the atmosphere over China during 1949–2008. Global Biogeochem Cycles 26:1–14CrossRefGoogle Scholar
  50. Xu J, Morris PJ, Liu J, Holden J (2018) PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. CATENA 160:134–140CrossRefGoogle Scholar
  51. Yan F, Liu X, Chen J, Yu L, Yang C, Chang L, Yang J, Zhang S (2017) China’s wetland databases based on remote sensing technology. Chin Geogra Sci 27:374–388CrossRefGoogle Scholar
  52. Yang X (2008) An elementary introduction to supervised and unsupervised classification of remote sensing image. Acta Geologica Sichuan 28:251–254Google Scholar
  53. Yin S, Li B, Shen F (2014) Review on studies of wetland definition. Wetl Sci 12:504–514Google Scholar
  54. Zhao Z, Zhang Y, Liu L, Liu F, Zhang H (2015) Recent changes in wetlands on the Tibetan Plateau: a review. J Geog Sci 25:879–896CrossRefGoogle Scholar
  55. Zhu Q, Peng C, Liu J, Jiang H, Fang X, Chen H, Niu Z, Gong P, Liu G, Wang M, Wang H, Yang Y, Chang J, Ge Y, Xiang W, Deng X, He J (2016) Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Sci Rep 6:38020PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© International Consortium of Landscape and Ecological Engineering 2019

Authors and Affiliations

  • Jieyi Wang
    • 1
  • Qiuan Zhu
    • 1
    Email author
  • Yan Yang
    • 2
  • Xian Zhang
    • 1
  • Jiang Zhang
    • 1
  • Minshu Yuan
    • 1
  • Huai Chen
    • 3
  • Changhui Peng
    • 1
    • 4
  1. 1.Center of Ecological Forecasting and Global Change, College ForestryNorthwest A&F UniversityYanglingChina
  2. 2.Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijingChina
  3. 3.Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
  4. 4.Institute of Environment ScienceUniversity of Quebec at MontrealMontrealCanada

Personalised recommendations