Advertisement

Landscape and Ecological Engineering

, Volume 10, Issue 2, pp 323–337 | Cite as

Dynamic disturbance regime approach in river restoration: concept development and application

  • Erik Formann
  • Gregory Egger
  • Christoph Hauer
  • Helmut Habersack
Original Paper

Abstract

In recent years, numerous restoration measures have been initiated to ecologically and morphologically improve rivers based on self-dynamic development. A wealth of monitoring studies has been implemented to evaluate these restoration measures. Such restored river systems, however, must develop for years to decades to achieve a (dynamic) equilibrium, with an equally lengthy period before serious evaluation is possible. Thus, modelling approaches that accurately quantify the underlying processes and their manifold interactions are useful tools for river management. This paper presents a new conceptual approach for analyzing the interrelationship among plant succession, morphology, and hydrological impacts. Based on the dynamic disturbance regime approach, the model concept addresses interdisciplinary processes in river morphodynamics. The development of the concept is outlined, and the approach is applied considering three different process types: (1) metastable, (2) oscillation, and (3) acyclic. All three describe the relationship between vegetation succession/retrogression and the impact of disturbances. We show that addressing these three different process types helps the prediction of intermediate and long-term river system development by going beyond steady-state monitoring results to consider future dynamic developments. Moreover, classifying these process types and comparing them with reference (natural) conditions helps evaluation of the river system and subsequently definition of management strategies.

Keywords

Disturbance regime Plant succession Vegetation Regime theory River morphology 

Notes

Acknowledgments

We acknowledge financial support from the Ministry of Agriculture, Forestry, Environment and Water Management and Carinthia Water Authority. We thank Dr. Peter Mayr, Dr. Stephan Schober, Dipl.-Ing. Karim Beheshti, and Dipl.-Ing. Hugo Seitz for their help during field work, and Dr. Elowyn Yager for knowledge exchange.

References

  1. Ackers P, White WR (1973) Sediment transport: new approach and analysis. J Hydraul Div ASCE 99(HY11):2040–2060Google Scholar
  2. Andrews ED (1984) Bed material entrainment and the hydraulic geometry of gravel-bed rivers in Colorado. Geol Soc Am Bull 95(3):371–378CrossRefGoogle Scholar
  3. ASCE Task Committee (1998) River width adjustment. I: processes and mechanics. J Hydraul Eng ASCE 124(9):881–902CrossRefGoogle Scholar
  4. Baker VR, Costa JE (1987) Flood power. In: Mayer L, Nash D (eds) Catastrophic flooding. Allen and Unwin, Winchester, pp 1–21Google Scholar
  5. Baker VR, Ritter DF (1975) Competence of rivers to transport coarse bedload material. Geol Soc Am Bull 86:975–978CrossRefGoogle Scholar
  6. Böhmer HJ (1999) Vegetationsdynamik im Hochgebirge unter dem Einfluss natürlicher Störungen. In: Dissertationes Botanicae (Berlin/Stuttgart) Band 311, p 180Google Scholar
  7. Bravard JP, Landon N, Peiry JL, Piégay H (1999) Principles of engineering geomorphology for managing channel erosion and bedload transport, examples from French rivers. Geomorphology 31(1/4):291–311. doi: 10.1016/S0169-555X(99)00091-4 CrossRefGoogle Scholar
  8. Bray DI (1982) Regime equations in gravel-bed rivers. In: Hey RD, Bathurst JC, Thorne CR (eds) Gravel-bed rivers. Wiley, Chicheser, pp 517–552Google Scholar
  9. Brierley GJ, Fryirs KA (2005) Geomorphology and river management: applications of the River Styles framework. Blackwell Publications, Oxford, p 398Google Scholar
  10. Buffington J, Tonina D (2009) Hyporheic exchange in mountain rivers II: effects of channel morphology on mechanics, scales, and rates of exchange. Geogr Compass 3. doi: 10.1111/j.1749-8198.2009.00225
  11. Chang HH (1980) Geometry of gravel streams. J Hydraul Div ASCE 106(HY9):1443–1456Google Scholar
  12. Chang HH (1988a) Fluvial processes in river engineering. Wiley, New YorkGoogle Scholar
  13. Chang HH (1988b) Introduction to FLUVIAl-12 mathematical model for erodible channels. In: Shou-shan F (ed) Twelve selected computer stream sedimentation models developed in the United States. Federal Energy Regulatory Commission, Washington, DCGoogle Scholar
  14. Corenblit D, Tabacchi E, Steiger J, Gurnell AM (2007) Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: a review of complementary approaches. Earth Sci Rev 84:56–86CrossRefGoogle Scholar
  15. Cowan WI (1956) Estimating hydraulic roughness coefficients. Agric Eng 37:473–475Google Scholar
  16. Dapporto S, Rinaldi M, Casagli N (2001) Failure mechanisms and pore water pressure conditions: analysis of a riverbank along the Arno River (Central Italy). Eng Geol 61(4):221–242CrossRefGoogle Scholar
  17. Darby SE, Rinaldi M, Pistolesi I (1997) Effects of flexible riparian vegetation growth on discharge capacity. In: Holly FM, Alsaffar A (eds) Environmental and coastal hydraulics. ASCE, New York, pp 394–399Google Scholar
  18. Denslow JS (1980) Patterns of plant species diversity during succession under different disturbance regimes. Oecologia 46:18–21CrossRefGoogle Scholar
  19. Eaton BC (2006) Bank stability analysis for regime models of vegetated gravel bed rivers. Earth Surf Process Landf. doi: 10.1002/esp.1364 Google Scholar
  20. Eaton BC, Church M, Millar RG (2004) Rational regime model of alluvial channel morphology and response. Earth Surf Process Landf 29:511–529CrossRefGoogle Scholar
  21. Edwards P, Kollmann J, Gurnell A, Petts G, Tockner K, Ward J (1999) A conceptual model of vegetation dynamics on gravel bars of a large Alpine river. Neth Wetl Ecol Manag 7(3):141–153CrossRefGoogle Scholar
  22. Egger G, Aigner S, Angermann K (2007) Vegetationsdynamik einer alpinen Wildflusslandschaft und Auswirkungen von Renaturierungsmaßnahmen auf das Störungsregime, dargestellt am Beispiel des Tiroler Lechs. In: Verein zum Schutz der Bergwelt e.V.: Jahrbuch Verein zum Schutz der Bergwelt (München) 72:5–54Google Scholar
  23. Egger G, Politti E, Garófano-Gómez V, Blamauer B, Ferreira MT, Rivaes R, Benjankar R, Habersack H (2012): Embodying interactions of riparian vegetation and fluvial processes into a dynamic floodplain model: concepts and applications. In: Maddock I, Harby A, Kemp P, Wood P (eds) Ecohydraulics: an integrated approach. Wiley, New York (in print)Google Scholar
  24. Forman R, Godron M (1986) Landscape ecology. Wiley, Canada, p 619Google Scholar
  25. Formann E, Habersack HM, Schober S (2007) Morphodynamic river processes and techniques for assessment of channel evolution in Alpine gravel bed rivers. Geomorphology 90:340–355. doi: 10.1016/j.geomorph.2006.10.029 CrossRefGoogle Scholar
  26. Glenn-Lewin DC, Van der Maarel E (1992) Patterns and processes of vegetation dynamics. In: Glenn-Lewin DC, Peet RK, Veblen TT (eds) Plant succession. Chapman & Hall, London, pp 11–59Google Scholar
  27. Günter A (1971) Die kritische mittlere Sohlenschubspannung bei Geschiebemischungen unter Berücksichtigung der Deckschichtbildung und der turbulenzbedingten Sohlschubspannungsschwankungen. Dissertation Nr. 4649 am Institut für Hydromechanik und Wasserwirtschaft an der ETH Zürich, ZürichGoogle Scholar
  28. Gurnell AM, Gregory KJ (1995) Interactions between semi-natural vegetation and hydrogeomorphological processes. Geomorphology 13:49–69CrossRefGoogle Scholar
  29. Gurnell AM, Van Oosterhout MP, Vlieger DE, Goodson JM (2006) Reach-scale interactions between aquatic plants and physical habitat: River Frome, Dorset. River Res Appl 22(6):667–680. Wiley. doi: 10.1002/rra.929 Google Scholar
  30. Habersack H, Nachtnebel HP (1994) Analysis of sediment transport developments in relation to human impacts. In: proceedings of an international symposium variability in stream erosion and sediment transport. IAHS Publ. No 224, Canberra, AustraliaGoogle Scholar
  31. Habersack H, Piégay H (2008) River restoration in the Alps and their surroundings: past experience and future challenges. In: Habersack H, Piégay H, Rinaldi M (eds) Gravel-bed rivers VI: from process understanding to river restoration, pp 703–737. doi: 10.1016/S0928-2025(07)11161-5
  32. Habersack H, Schober St, Formann E, Beheshti K, Daniczek M (2003) Flussmorphologisches Monitoring im Rahmen des LIFE—Projektes “Obere Drau”. In: Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft: 20. Flussbautagung LIFE—Symposium, 8–11 Sept 2003, Wien, pp 15–45Google Scholar
  33. Hey RD (1997) Stable river morphology. In: Thorne CR, Hey RD, Newson MD (eds) Applied fluvial geomorphology for river engineering and management. Wiley, New York, pp 223–236Google Scholar
  34. Huang HQ, Nanson GC (1997) Vegetation and channel variation; a case study of four small streams in southeastern Australia. Geomorphology 18:237–249CrossRefGoogle Scholar
  35. Huston MA (1994) Biological diversity—the coexistence of species on changing landscapes. Cambridge University Press, Cambridge, p 681Google Scholar
  36. Jia Y, Wang S (2001) CCHE2D—two dimensional hydrodynamic and sediment transport model for unsteady open channel flows over loose bed. Technical Report No NCCHE–TR–2001-1. School of Engineering, University of Mississippi, National Center for Computational Hydroscience and EngineeringGoogle Scholar
  37. Julien PY, Wargadalam J (1995) Alluvial channel geometry: theory and applications. J Hydraul Eng ASCE 121(4):312–325CrossRefGoogle Scholar
  38. Jungwirth M, Moog O, Muhar S (1993) Effects of river bed restructuring on fish and benthos of a fifth order stream, Melk, Austria. Regul River Res Manag 8:195–204CrossRefGoogle Scholar
  39. Jungwirth M, Muhar S, Schmutz S (2002) Re-establishing and assessing ecological integrity in riverine landscapes. Freshw Biol 47:867–887. doi: 10.1046/j.1365-2427.2002.00914.x CrossRefGoogle Scholar
  40. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river–floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127Google Scholar
  41. Kalliola R, Puhakka M (1988) River dynamics and vegetation mosaicism: a case study of the River Kamajohka, northernmost. Finl J Biogeogr 15:703–719CrossRefGoogle Scholar
  42. Komar PD, Carling PA (1991) Grain sorting in gravel-bed streams and the choice of particle sizes for flow competence evaluations. Sedimentology 35:681–695CrossRefGoogle Scholar
  43. Kondolf GM (2006) River restoration and meanders. Ecol Soc 11:42–60Google Scholar
  44. Kondolf GM, Downs PW (1996) Catchment approach to planning channel restoration. In: Brookes A, Shields FD Jr (eds) River channel restoration: guiding principles for sustainable projects. Wiley, Chichester, pp 129–148Google Scholar
  45. Kondolf GM, Piégay H, Landon N (2007) Changes in the riparian zone of the lower Eygues River, France, since 1830. Landsc Ecol 22(3):367–384. doi: 10.1007/s10980-006-9033-y CrossRefGoogle Scholar
  46. Kromp-Kolb H, Schwarzl I (ed.) (2004) StartClim2004—Heat and drought and their impacts in Austria. Final Report. Institute of Meteorology. Department of Water, Atmosphere, Environment. BOKU, University of Natural Resources and Applied Life Sciences, ViennaGoogle Scholar
  47. Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. WH Freeman & Company, San FranciscoGoogle Scholar
  48. Liébault F, Piégay H (2001) Assessment of channel changes due to long-term bedload supply decrease, Roubion River, France. Geomorphology 36(3/4):167–186. doi: 10.1016/S0169-555X(00)00044-1 CrossRefGoogle Scholar
  49. Mayr P (2003) Weiterentwicklung von Messtechnik und Methodiken im Wasserbau. Dissertation, Universität für Bodenkultur in Wien, IWHWGoogle Scholar
  50. Meyer-Peter E, Müller R (1948) Formulas for bed-load transport, International Association of Hydraulic Research, 2nd Meeting. Stockholm, SwedenGoogle Scholar
  51. Millar RG, Quick MC (1993) Effect of bank stability on geometry of gravel rivers. J Hydraul Eng ASCE 119(12):1343–1363CrossRefGoogle Scholar
  52. Millar RG, Quick MC (1998) Stable width and depth of gravel-bed rivers with cohesive banks. J Hydraul Eng ASCE 124(10):1005–1013CrossRefGoogle Scholar
  53. Molinas A, Yang CT (1986) Computer program user’s manual for GSTARS. Repl to US Dept of the Interior, Bureau of Reclamation Engineering and Research Center. Colorado State University, Ft CollinsGoogle Scholar
  54. Mucina L, Grabherr G, Ellmauer T (1993) Die Pflanzengesellschaften Österreichs—Natürliche waldfreie Vegetation, Teil 2. Gustav Fischer Verlag, Stuttgart New YorkGoogle Scholar
  55. Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New YorkGoogle Scholar
  56. Muhar S, Schwarz M, Schmutz S, Jungwirth M (2000) Identification of rivers with high and good habitat quality: methodological approach and applications in Austria. In: Jungwirth M, Muhar S, Schmutz S (eds) Assessing the ecological integrity of running waters. Kluwer Academic Publishers, London, pp 343–358CrossRefGoogle Scholar
  57. Muhar S, Poppe M, Egger G, Schmutz S, Melcher A (2004) Flusslandschaften Österreichs. Ausweisung von Flusslandschaftstypen anhand des Naturraums, der Fischfauna und der Auenvegetation. Forschungsprogramm Kulturlandschaft. Bundesministerium für Bildung, Wissenschaft und Kultur (Vienna), Band 16, p. 181Google Scholar
  58. Müller N (1995) River dynamics and floodplain vegetation and their alterations due to human impact. Arch Hydrobiol Suppl 101 Large Rivers 9:477–512Google Scholar
  59. Parker G (1996) Gravel-bed channel stability. In: Nakato Ettema (ed) Issues and directions in hydraulics. Balkema, Rotterdam, pp 115–133Google Scholar
  60. Pizzuto JE (1990) Numerical simulation of gravel bed widening. Water Resour Res 26:1971–1980CrossRefGoogle Scholar
  61. Plachter H (1998) Die Auen alpiner Wildflüsse als Modelle störungsgeprägter ökologischer Systeme. In: Finck P, Klein M, Riecken U, Schröder E (ed) Schutz und Förderung dynamischer Prozesse in der Landschaft. Schriftenreihe für Landschaftspflege und Naturschutz 56. Bundesamt für Naturschutz. Bonn-Bad Godesberg, Bonn, p 21Google Scholar
  62. Rinaldi M (2003) Recent channel adjustments in alluvial rivers of Tuscany, Central Italy. Earth Surf Process Landf 28:589–608. Wiley InterScience (www.interscience.wiley.com). doi: 10.1002/esp.464
  63. Rinaldi M, Darby SE (2005) Advances in modelling river bank erosion processes. 6th Gravel Bed River Workshop, AustriaGoogle Scholar
  64. Rodi W (1980) Turbulence models and their application in hydraulics. Int Assoc Hydraul Res (IAHR), DelftGoogle Scholar
  65. Rohde S, Schütz M, Kienast F, Englmaier P (2005) River widening: an approach to restoring riparian habitats and plant species. River Res Appl 23:303–322. Wiley InterScience (www.interscience.wiley.com). doi: 10.1002/rra.981
  66. Roni P, Hason K, Beechie T (2005) Habitat rehabilitation for inland fisheries. Global review of effectiveness and guidance for rehabilitation of freshwater ecosystems. FAO Fisheries Technical Paper. No 484, RomeGoogle Scholar
  67. Schober S (2004) Raum-zeitliche Analyse flussmorphologischer Fragestellungen in alpinen Einzugsgebieten. Doctoral thesis, BOKU, WienGoogle Scholar
  68. Shields A (1936) Anwendung der Änlichkeitsmechanik and der Turbulenzforschung auf die Geschienbebewegung: Mitteilungen der Preussischen Versuchsanstalt fur Wasserbau and Schiffsbau, Heft 26, BerlinGoogle Scholar
  69. Simon A, Collison AJC (2001) Quantifying the mechanical and hydrological effects of riparian vegetation on streambank stability. Earth Surf Process Landf 27:527–546CrossRefGoogle Scholar
  70. Stanford JA, Lorang MS, Hauer FR (2005) The shifting habitat mosaic of river ecosystems. Verh Internat Verein Limnol 29(1):123–136Google Scholar
  71. Tabacchi E, Lambs L, Guilloy H, Planty-Tabacchi A, Muller E, Décamps H (2000) Impacts of riparian vegetation on hydrological processes. Hydrol Process 14:2959–2976CrossRefGoogle Scholar
  72. Thorne CR (1990) Effect of vegetation on riverbank erosion and stability. In: Thornes JB (ed) Vegetation and erosion. Wiley, Chichester, pp 125–144Google Scholar
  73. Trimble SW (1990) Geomorphic effects of vegetation cover and management: some time and space considerations in prediction of erosion and sediment yield. In: Thornes JB (ed) Vegetation and erosion. Wiley, Chichester, pp 55–65Google Scholar
  74. Turner MG, Gardner RH, O′Neill RV (2001) Landscape ecology in theory and practice—pattern and process. Springer-Verlag, New YorkGoogle Scholar
  75. Turner MG, Collins SL, Lugo AL, Magnuson JJ, Rupp TS, Swanson FJ (2003) Disturbance dynamics and ecological response: the contribution of long-term ecological research. Bioscience 53(1):46–56CrossRefGoogle Scholar
  76. Van De Wiel MJ, Darby SE (2004) Numerical modeling of bed topography and bank erosion along tree-lined meandering rivers. In: Bennett SJ, Simon A (eds) Riparian vegetation and fluvial geomorphology. American Geophysical Union, Washington, DC, pp 267–282CrossRefGoogle Scholar
  77. Van Rijn LC (1984) Sediment transport. Part III: bed forms and alluvial roughness. J Hydraul Eng ASCE 110(12):1733–1754CrossRefGoogle Scholar
  78. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137CrossRefGoogle Scholar
  79. Ward JV, Stanford JA (1983) The serial discontinuity concept of lotic ecosystems. In: Fontaine TD, Bartell SM (eds) Dynamics of lotic ecosystems. Ann Arbor Science Publishers, Ann Arbor, pp 29–42Google Scholar
  80. White PS, Pickett STA (1985) Natural disturbance and patch dynamics: an introduction. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, pp 3–13Google Scholar
  81. White WR, Bettess R, Paris E (1982) An analytical approach to river regime. J Hydraul Div ASCE 108(10):1179–1193Google Scholar
  82. Willner W, Grabherr G (2007) Die Wälder und Gebüsche Österreichs. 1. Elsevier GmbH, Auflage, MünchenGoogle Scholar
  83. Wohl E, Angermeer PL, Bledsoe B, Kondolf GM, MacDonnell L, Merritt DM, Palmer MA, Poff NLR, Tarboton D (2005) River restoration. Water Resour Res 41:W10301. doi: 10.1029/2005WR003985 Google Scholar
  84. Yang CT, Wan S (1991) Comparison of selected bed-material load formulas. J Hydraul Eng ASCE 117(8):973–989CrossRefGoogle Scholar

Copyright information

© International Consortium of Landscape and Ecological Engineering and Springer Japan 2013

Authors and Affiliations

  • Erik Formann
    • 1
  • Gregory Egger
    • 3
  • Christoph Hauer
    • 2
  • Helmut Habersack
    • 2
  1. 1.Department of Water ManagementOffice of the Government of Lower AustriaSt. PöltenAustria
  2. 2.Department of Water, Atmosphere and Environment, Institute of Water Management, Hydrology and Hydraulic EngineeringBOKU, University of Natural Resources and Applied Life SciencesViennaAustria
  3. 3.Office of EnvironmentKlagenfurtAustria

Personalised recommendations