Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Forest restoration following a windthrow: how legacy retention versus plantation after salvaging alters the trajectory of initial recovery

Abstract

Recently, the conversion of plantations into natural forests has attracted increasing attention, but little is known about how to convert a windthrown plantation into a natural forest. We examined the initial 3-year effects of salvage logging, site preparation, planting, and weeding in comparison with the effects of legacy retention after a typhoon blowdown on the changes in terrestrial environments and plant compositions and the similarity of the species composition to that of the intact natural forest. Our major findings are as follows: (1) A homogeneous, sunny, and flat environment continued for 3 years in the planted and weeded plot, whereas a heterogeneous environment was observed in the legacy retention plot; however, the light environment changed slightly in the planted plot. (2) The species composition in the planted plots changed greatly due to invasion by annual, biennial, and perennial herbs and early successional trees. Alien species also invaded the planted row. Conversely, the species composition changed little in the legacy retention, which was likely due to the presence of residual plants that prevented shade-intolerant species from being established. (3) The legacy retention, followed by the residual row, was the closest to the natural forest with respect to species composition, whereas the planted row was the most dissimilar from the natural forest. Legacy retention appears to be the most appropriate way to restore a natural forest immediately after a windthrow, yet supplemental planting may be necessary to restore the desired broadleaved species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Banner A, LePage P (2008) Long-term recovery of vegetation communities after harvesting in the coastal temperate rainforests of northern British Columbia. Can J Forest Res Revue Canadienne De Recherche Forestiere 38:3098–3111. doi:10.1139/x08-145

  2. Banta JA, Stark SC, Stevens MHH, Pendergast TH, Baumert A, Carson WP (2008) Light reduction predicts widespread patterns of dominance between asters and goldenrods. Plant Ecol 199:65–76. doi:10.1007/s11258-008-9412-3

  3. Beatty SW (1984) Influence of microtopography and canopy species on spatial patterns of forest understory plants. Ecology 65:1406–1419

  4. Beatty SW, Stone EL (1986) The variety of soil microsites created by tree falls. Can J Forest Res Revue Canadienne De Recherche Forestiere 16:539–548. doi:10.1139/x86-094

  5. Bell FW, Newmaster SG (2002) The effects of silvicultural disturbances on the diversity of seed-producing plants in the boreal mixedwood forest. Can J Forest Res Revue Canadienne De Recherche Forestiere 32:1180–1191. doi:10.1139/x02-024

  6. Chapman EL, Chambers JQ, Ribbeck KF, Baker DB, Tobler MA, Zeng HC, White DA (2008) Hurricane Katrina impacts on forest trees of Louisiana’s Pearl River basin. Forest Ecol Manag 256:883–889. doi:10.1016/j.foreco.2008.05.057

  7. del Rio CMR (2006) Changes in understory composition following catastrophic windthrow and salvage logging in a subalpine forest ecosystem. Can J Forest Res Revue Canadienne De Recherche Forestiere 36:2943–2954. doi:10.1139/x06-169

  8. Drever CR, Peterson G, Messier C, Bergeron Y, Flannigan M (2006) Can forest management based on natural disturbances maintain ecological resilience? Can J Forest Res Revue Canadienne De Recherche Forestiere 36:2285–2299. doi:10.1139/x06-132

  9. Elliott KJ, Hitchcock SL, Krueger L (2002) Vegetation response to large scale disturbance in a southern Appalachian forest: Hurricane Opal and salvage logging. J Torr Bot Soc 129:48–59

  10. Fischer A, Lindner M, Abs C, Lasch P (2002) Vegetation dynamics in central European forest ecosystems (near-natural as well as managed) after storm events. Folia Geobot 37:17–32

  11. Flinn KM (2007) Microsite-limited recruitment controls fern colonization of post-agricultural forests. Ecology 88:3103–3114. doi:10.1890/06-2124.1

  12. Ford ED (1979) An ecological basis for predicting the growth and stability of plantation forests. In: Ford ED, Malcolm DC, Atterson J (eds) The ecology of even-aged forest plantations. Inst Terr Ecol, Cambridge, pp 147–174

  13. Forestry Agency (2011) Forestry and rural mountain communities. In: Annual report on trends in forests and forestry, pp 14–17

  14. Foster DR, Knight DH, Franklin JF (1998) Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems 1:497–510

  15. Halpern CB (1988) Early successional pathways and the resistance and resilience of forest communities. Ecology 69:1703–1715

  16. Halpern CB, Spies TA (1995) Plant-species diversity in natural and managed forests of the pacific-northwest. Ecol Appl 5:913–934

  17. Hannah PR (1987) Regeneration methods for oaks. North J Appl For 4:97–101

  18. Honnay O, Bossuyt B, Verheyen K, Butaye J, Jacquemyn H, Hermy M (2002) Ecological perspectives for the restoration of plant communities in European temperate forests. Biodivers Conserv 11:213–242

  19. Japan Meteorological Agency (2010) Climate statistics. In: Japan Meteorological Agency. http://www.data.jma.go.jp/obd/stats/etrn/index.php. Accessed 3 Jan 2012

  20. Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. Forest Ecol Manag 140:227–238. doi:10.1016/s0378-1127(00)00282-6

  21. Jonasova M, Vavrova E, Cudlin P (2010) Western Carpathian mountain spruce forest after a windthrow: natural regeneration in cleared and uncleared areas. Forest Ecol Manag 259:1127–1134. doi:10.1016/j.foreco.2009.12.027

  22. Kint V, Geudens G, Mohren GMJ, Lust N (2006) Silvicultural interpretation of natural vegetation dynamics in ageing Scots pine stands for their conversion into mixed broadleaved stands. Forest Ecol Manag 223:363–370. doi:10.1016/j.foreco.2005.11.018

  23. Lang KD, Schulte LA, Guntenspergen GR (2009) Windthrow and salvage logging in an old-growth hemlock-northern hardwoods forest. Forest Ecol Manag 259:56–64. doi:10.1016/j.foreco.2009.09.042

  24. Mabry C, Korsgren T (1998) A permanent plot study of vegetation and vegetation-site factors fifty-three years following disturbance in central New England, USA. Ecoscience 5:232–240

  25. McGee GG (2001) Stand-level effects on the role of decaying logs as vascular plant habitat in Adirondack northern hardwood forests. J Torr Bot Soc 128:370–380

  26. Morimoto J, Morimoto M, Nakamura F (2011) Initial vegetation recovery following a blowdown of a conifer plantation in monsoonal East Asia: impacts of legacy retention, salvaging, site preparation, and weeding. Forest Ecol Manag

  27. Newmaster SG, Bell FW (2002) The effects of silvicultural disturbances on cryptogam diversity in the boreal-mixedwood forest. Can J Forest Res Revue Canadienne De Recherche Forestiere 32:38–51

  28. Peck JH, Peck CJ, Farrar DR (1990) Influences of life history attributes on formation of local and distant fern populations. Am Fern J 80:126–142

  29. Peltzer DA, Bast ML, Wilson SD, Gerry AK (2000) Plant diversity and tree responses following contrasting disturbances in boreal forest. Forest Ecol Manag 127:191–203

  30. Penrod KA, McCormick LH (1996) Abundance of viable hay-scented fern spores germinated from hardwood forest soils at various distances from a source. Am Fern J 86:69–79

  31. Peterson CJ, Campbell JE (1993) Microsite differences and temporal change in plant communities of treefall pits and mounds in an old-growth forest. Bull Torrey Bot Club 120:451–460

  32. Peterson CJ, Leach AD (2008) Salvage logging after windthrow alters microsite diversity, abundance and environment, but not vegetation. Forestry 81:361–376

  33. Peterson CJ, Pickett STA (1995) Forest reorganization: a case study in an old-growth forest catastrophic blowdown. Ecology 76:763–774

  34. Prestemon JP, Wear DN, Stewart FJ, Holmes TP (2006) Wildfire, timber salvage, and the economics of expediency. Forest Pol Econ 8:312–322. doi:10.1016/j.forpol.2004.07.003

  35. Rydgren K, Hestmark G, Okland RH (1998) Revegetation following experimental disturbance in a boreal old-growth Piceaabies forest. J Veg Sci 9:763–776

  36. Rydgren K, Okland RH, Hestmark G (2004) Disturbance severity and community resilience in a boreal forest. Ecology 85:1906–1915

  37. Sessions J, Bettinger P, Buckman R, Newton M, Hamann AJ (2004) Hastening the return of complex forests following fire: the consequences of delay. J For 102:38–45

  38. Shimizu T (2003) Naturalized plants of Japan, 1st edn. Heibonsha, Tokyo

  39. Soltes R, Skolek J, Homolova Z, Kyselova Z (2010) Early successional pathways in the Tatra Mountains (Slovakia) forest ecosystems following natural disturbances. Biologia 65:958–964. doi:10.2478/s11756-010-0110-y

  40. Stahelin R (1943) Factors influencing the natural restocking of high altitude burns by coniferous trees in the central Rocky Mountains. Ecology 24:19–30

  41. Stephenson NL (1999) Reference conditions for giant sequoia forest restoration: structure, process, and precision. Ecol Appl 9:1253–1265

  42. Takafumi H, Hiura T (2009) Effects of disturbance history and environmental factors on the diversity and productivity of understory vegetation in a cool-temperate forest in Japan. Forest Ecol Manag 257:843–857. doi:10.1016/j.foreco.2008.10.020

  43. Tsushima T, Kanno M, Terasawa K, Kohata Y, Abe T, Sato H, Mioka O, Hara H, AsaiT (2005) Report of the damage from typhoon no. 18 in 2004. Koushunai-Kihou. Hokkaido Forestry Research Institute, pp 1–12

  44. Ulanova NG (2000) The effects of windthrow on forests at different spatial scales: a review. Forest Ecol Manag 135:155–167

  45. Wyatt JL, Silman MR (2010) Centuries-old logging legacy on spatial and temporal patterns in understory herb communities. Forest Ecol Manag 260:116–124. doi:10.1016/j.foreco.2010.04.010

  46. Yamagawa H, Ito S, Nakao T (2010) Restoration of semi-natural forest after clearcutting of conifer plantations in Japan. Landsc Ecol Eng 6:109–117. doi:10.1007/s11355-009-0088-1

  47. Zenner EK, Berger AL (2008) Influence of skidder traffic and canopy removal intensities on the ground flora in a clearcut-with-reserves northern hardwood stand in Minnesota, USA. Forest Ecol Manag 256:1785–1794. doi:10.1016/j.foreco.2008.05.030

  48. Zerbe S (2002) Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantations. Forest Ecol Manag 167:27–42. doi:10.1016/s0378-1127(01)00686-7

Download references

Acknowledgments

This research was partially supported by a Grant-in-Aid for Scientific Research (A) (19208013, 2007–2010) from the Ministry of Education, Science, Sports, and Culture. The National Forest Service of Ishikari provided invaluable logistical support. Valuable field support and comments were provided by the members of the Laboratory of Forest Ecosystem Management, Hokkaido University.

Author information

Correspondence to Miho Morimoto.

Appendix

Appendix

 

Abbreviation Species name
Tree
 AJ Acer japonicum
 AM Acer mono
 AP Acer palmatum
 AS Abies sachalinensis
 ASf Acanthopanax sciadophylloides
 AU Acer ukurunduense
 B Betula spp.
 CC Cornus controversa
 CCb Carpinus cordata
 CJ Cercidiphyllum japonicum
 FL Fraxinus lanuginosa
 FM Fraxinus mandshurica
 KP Kalopanax pictus
 MB Morus bombycis
 MK Magnolia kobus
 MO Magnolia obovata
 PA Phellodendron amurense
 PG Picea glehnii
 PJ Picea jezoensis
 PM Prunus maximowiczii
 PS Prunus ssiori
 Q Quercus crispula
 S Salix spp.
 SA Sorbus alnifolia
 SC Sorbus commixta
 UD Ulmus davidiana
Shrub
 AE Aralia elata
 HP Hydrangea paniculata
 LG Leucothoe grayana
 PT Pachysandra terminalis
 RI Rubus idaeus
 SR Sambucus racemosa
Herb
 AC Aralia cordata
 ACt Agrostis clavata
 AD Aruncus dioicus
 AG Aster glehni
 AM Anaphalis margaritacea
 AMm Artemisia montana
 AS Agrostis scabra
 CA Circaea alpina
 CH Calamagrostis hakonensis
 CJ Carex japonica
 CK Cirsium kamtschaticum
 CL Calamagrostis langsdorffii
 CM Clinopodium micranthum
 CO Carex oxyandra
 CP Carex puberula
 EC Elsholtzia ciliata
 EG Eupatorium glehnii
 HA Hypericum ascyron
 HE Hypericum erectum
 JE Juncus effusus
 JT Juncus tenuis
 LC Luzula capitata
 LJ Lysimachia japonica
 LR Lactuca raddeana
 LU Lycopus uniflorus
 MC Muhlenbergia curviaristata
 MD Maianthemum dilatatum
 MH Muhlenbergia hakonensis
 PA Plantago asiatica
 PB Panicum bisulcatum
 PF Potentilla freyniana
 PH Picris hieracioides
 PJ Petasitis japonicus
 PL Persicaria longiseta
 PN Persicaria nepalensis
 PV Patrinia villosa
 SC Senecio cannabifolius
 SV Solidago virgaurea
 TP Tiarella polyphylla
 TT Trillium tschonoskii
 VG Viola grypoceras
 VS Viola selkirkii
Alien species
 ag Agrostis gigantea
 cc Conyza canadensis
 ea Erigeron annuus
 hm Hypericum majus
 ob Oenothera biennis
 pl Panicum lanuginosum
 pt Poa trivialis
 ra Rumex acetosella
 sg Solidago gigantean
 to Taraxacum officinale
 tr Trifolium repens
Fern
 ay Athyrium yokoscense
 da Dryopteris austriaca
 dc Dryopteris crassirhizoma
 lc Lycopodium clavatum
 lo Lycopodium obscurum
 oc Osmunda cinnamomea
 tn Thelypteris nipponica

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morimoto, M., Morimoto, J., Moriya, Y. et al. Forest restoration following a windthrow: how legacy retention versus plantation after salvaging alters the trajectory of initial recovery. Landscape Ecol Eng 9, 259–270 (2013). https://doi.org/10.1007/s11355-012-0206-3

Download citation

Keywords

  • Disturbance
  • Succession trajectory
  • Natural forest restoration
  • Biological legacies