Advertisement

Landscape and Ecological Engineering

, Volume 5, Issue 1, pp 1–10 | Cite as

Multiscale delineation of landscape planning units based on spatial variation of land-use patterns in Galicia, NW Spain

  • Emilio Díaz-Varela
  • Carlos José Álvarez-López
  • Manuel Francisco Marey-Pérez
Original Paper

Abstract

The success of landscape planning and environmental management strategies depends largely on the congruence between the operational scales of landscapes and the spatial scope of the planning instruments. In order to achieve good results, landscape planning units should be designed to fit the structural and functional characteristics of the landscape. This paper describes a simple, straightforward methodology for the delineation of landscape units based on the differentiation among areas according to the trend in heterogeneity of their spatial structure. A moving-window analysis was performed with varying window sizes. This analysis enabled modeling of the spatial response of heterogeneity to multiple scales and detection of two different domains of scale. The information obtained was used to delineate a multiscale structure for landscape units. A subsequent study of the composition and configuration of landscape structure in these units verified that they all have distinct characteristics and therefore different planning needs. The areas thus differentiated can be considered as targets of specific and differentiated planning strategies, and can be seen as a preliminary zonation in which the relevant planning methodologies can be developed according to each case.

Keywords

Landscape ecological planning Land-use planning Scale Heterogeneity Moving-window analysis Landscape pattern analysis 

Notes

Acknowledgments

This research was partly funded by a grant for research projects from the Galician government (Xunta de Galicia) (PGIDT02RAG29103PR), and by a Research Contract within the framework of the Isidro Parga Pondal research programme, from the same institution. The authors thank two anonymous reviewers for their helpful suggestions and comments. All the experiments developed in this work, including data acquisition and processing, comply with the current regional, state, and international laws and agreements. We also thank Dr Christine Francis for correcting the English grammar of the text.

References

  1. Ahern J (1999) Spatial concepts, planning strategies, and future scenarios: a framework method for integrating landscape ecology and landscape planning. In: Klopatek JM, Gardner RH (eds) Landscape ecological analysis. Issues and applications. Springer-Verlag, New York, pp 175–201Google Scholar
  2. Allen TFH, Starr TB (1982) Hierarchy: perspectives for ecological complexity. University of Chicago Press, ChicagoGoogle Scholar
  3. Bailey RG (2005) Identifying ecoregion boundaries. Environ Manage 34:14–26. doi: 10.1007/s00267-003-0163-6 CrossRefGoogle Scholar
  4. Bastian O, Krönert R, Lipský Z (2006) Landscape diagnosis on different space and time scales—a challenge for landscape planning. Landsc Ecol 21:359–374CrossRefGoogle Scholar
  5. Berry JK (2001) Map analysis. Procedures and applications in GIS modelling. Basis Press, USA. Available online, URL: http://www.innovativegis.com/basis/MapAnalysis/Topic9/Topic9.html. Accessed 1 Sept 2008
  6. Botequilha-Leitao A, Ahern J (2002) Applying landscape ecological concepts and metrics in sustainable landscape planning. Landsc Urban Plan 59:65–93CrossRefGoogle Scholar
  7. Botequilha-Leitao A, Miller J, Ahern J, McGarigal K (2006) Measuring landscapes: a planner’s handbook. Island, WashingtonGoogle Scholar
  8. Burel F, Baudry J (1999) Écologie du paysage. Concepts, méthodes et applications. Editions Tec & Doc, ParisGoogle Scholar
  9. Calvo-Iglesias MS, Crecente-Maseda R, Fra-Paleo U (2006) Exploring farmer’s knowledge as a source of information on past and present cultural landscapes—a case study from NW Spain. Environ Manage 78:334–343Google Scholar
  10. Carlile DW, Skalski JR, Batker JE, Thomas JM, Cullinan VI (1989) Determination of ecological scale. Landsc Ecol 2:203–213CrossRefGoogle Scholar
  11. Cleland DT, Avers PE, McNab WH, Jensen ME, Bailey RG, King T, Russell WE (1997) National hierarchical framework of ecological units. In: Boyce MS, Haney A (eds) Ecosystem management applications for sustainable forest and wildlife resources. Yale University Press, New Haven, pp 181–200Google Scholar
  12. Croissant C (2004) Landscape patterns and parcel boundaries: an analysis of composition and configuration of land use and land cover in south-central Indiana. Agric Ecosyst Environ 101:219–232CrossRefGoogle Scholar
  13. Diaz-Varela ER, Marey-Pérez MF, Rigueiro-Rodriguez A, Alvarez-Alvarez P (2008) Landscape metrics for characterization of forest landscapes in a sustainable management framework: potential application and prevention of misuse. Ann For Sci (in press)Google Scholar
  14. Dramstad WE, Olson JD, Forman RTT (1996) Landscape ecology principles in landscape architecture and land-use planning. Island, WashingtonGoogle Scholar
  15. Dramstad WE, Fry G, Fjellstad WJ, Skar B, Helliksen W, Sollund MLB, Tveit MS, Geelmuyden AK, Framstad E (2001) Integrating landscape-based values-Norwegian monitoring of agricultural landscapes. Landsc Urban Plan 57:257–268CrossRefGoogle Scholar
  16. Eiden G, Kayadjanian M, Vidal C (2000) Quantifying landscape structures: spatial and temporal dimensions. In: European Commission, from land cover to landscape diversity. Available online, URL: http://europa.eu.int/comm/agriculture/publi/landscape/index.html. Accessed 1 Sept 2008
  17. Fjellstad WJ, Dramstad WE, Strand GH, Fry GLA (2001) Heterogeneity as a measure of spatial pattern for monitoring agricultural landscapes. Nor Geogr Tidsskr 55:71–76CrossRefGoogle Scholar
  18. Forman RTT (1995) Land mosaics. The ecology of landscapes and regions. Cambridge University Press, CambridgeGoogle Scholar
  19. Gaucherel C, Burel F, Baudry J (2007) Multiscale and surface pattern analysis of the effect of landscape pattern on carabid beetles distribution. Ecol Indic 7:598–609CrossRefGoogle Scholar
  20. González-Bernáldez F (1981) Ecología y Paisaje. Blume, MadridGoogle Scholar
  21. Hargis CD, Bissonette JA, David JL (1997) Understanding measures of landscape pattern. In: Bissonette JA (ed) Wildlife and landscape ecology: effects of pattern and scale. Springer-Verlag, New York, pp 231–261Google Scholar
  22. Hawkins V, Selman P (2002) Landscape scale planning: exploring alternative land use scenarios. Landsc Urban Plan 60:211–224CrossRefGoogle Scholar
  23. Herzog F, Lausch A, Muller E, Thulke HH, Steinhardt U, Lehmann S (2001) Landscape metrics for assessment of landscape destruction and rehabilitation. Environ Manage 27:91–107PubMedCrossRefGoogle Scholar
  24. Hoover SR, Parker AJ (1991) Spatial components of biotic diversity in landscapes of Georgia, USA. Landsc Ecol 5:125–136CrossRefGoogle Scholar
  25. Jongman RHG, Bunce RGH, Metzger MJ, Mücher CA, Howard DC, Mateus VL (2006) Objectives and applications of a statistical environmental stratification of Europe. Landsc Ecol 21:409–419. doi: 10.1007/s10980-005-6428-0 CrossRefGoogle Scholar
  26. Kamada M (2005) Hierarchically structured approach for restoring natural forest-trial in Tokushima Prefecture, Shikoku, Japan. Landsc Ecol Eng 1:61–70. doi: 10.1007/s11355-005-0005-1 CrossRefGoogle Scholar
  27. King AW (1997) Hierarchy theory: a guide to system structure for wildlife biologists. In: Bissonette JA (ed) Wildlife and landscape ecology: effects of pattern and scale. Springer-Verlag, New York, pp 185–212Google Scholar
  28. Klijn F (1991) Hierarchical classification of ecosystems: a tool for susceptibility analysis and quality evaluation for environmental policy. In: Ravera O (ed) Terrestrial and aquatic ecosystems. Perturbation and recovery. Ellis Horwood, LondonGoogle Scholar
  29. Kong F, Nakagoshi N (2006) Spatial-temporal gradient analysis of urban green spaces in Jinan, China. Landsc Urban Plan 78:147–164CrossRefGoogle Scholar
  30. Kotliar NB, Wiens JA (1990) Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–260CrossRefGoogle Scholar
  31. Küchler AW (1988) The classification of vegetation. In: Küchler AW, Zonneveld IS (eds) Vegetation mapping. Kluwer Academic, Dordrecht, pp 67–80Google Scholar
  32. Li H, Reynolds JF (1995) On definition and quantification of heterogeneity. Oikos 73:280–284CrossRefGoogle Scholar
  33. Loehle C (1990) Home range. A fractal approach. Landsc Ecol 5:39–52CrossRefGoogle Scholar
  34. Lowe WH, Likens GE, Power ME (2006) Linking scales in stream ecology. Bioscience 56:591–597CrossRefGoogle Scholar
  35. Mander Ü, Külvik M, Jongman RHG (2003) Scaling in territorial ecological networks. Landschap 20:113–127Google Scholar
  36. Marey-Pérez MF (2003) Tenencia de la tierra en Galicia. Modelo para la caracterización de los propietarios forestales. Ph.D. Thesis. Digital edition (CD), Servicio de Publicaciones de la Universidad de Santiago de Compostela, Santiago de Compostela, Spain, 641 ppGoogle Scholar
  37. Mata-Olmo R, Sanz-Herráiz C (2003) Atlas de los paisajes de España. Ministerio de Medio Ambiente. Centro de Publicaciones, MadridGoogle Scholar
  38. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: Spatial Pattern Analysis Program for categorical maps. Available online, URL: www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed 1 Sept 2008
  39. McMahon G, Wiken ED, Gauthier DA (2004) Toward a scientifically rigorous basis for developing mapped ecological regions. Environ Manage 34:111–124. doi: 10.1007/s00267-004-0170-2 CrossRefGoogle Scholar
  40. Meentemeyer V (1989) Geographical perspectives of space, time and scale. Landsc Ecol 3:163–173CrossRefGoogle Scholar
  41. Meeus JHA, Wijermans MP, Vroom MJ (1990) Agricultural landscapes in Europe and their transformation. Landsc Urban Plan 18:289–352CrossRefGoogle Scholar
  42. Meisel JE, Turner MG (1998) Scale detection in real and artificial landscapes using semivariance analysis. Landsc Ecol 13:347–362CrossRefGoogle Scholar
  43. Milanova EV, Kushlin AV (1993) World map of present day landscapes, an explanatory note. Department of World Physical Geography and Geoecology. Moscow State University, UNEPGoogle Scholar
  44. Nagendra H (2002) Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Appl Geogr 22:175–186CrossRefGoogle Scholar
  45. Nakamura F, Inahara S, Kaneko M (2005) A hierarchical approach to ecosystem assessment of restoration planning at regional, catchment and local scales in Japan. Landsc Ecol Eng 1:43–52. doi: 10.1007/s11355-005-0004-2 CrossRefGoogle Scholar
  46. O’Neill RV, De Angelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. Princeton University Press, PrincetonGoogle Scholar
  47. O’Neill RV, Krummel JR, Gardner RH, Sugihara G, Jackson B, DeAngelis DL, Milne BT, Turner MG, Zygmunt B, Christensen SW, Dale VH, Graham RL (1988) Indices of landscape pattern. Landsc Ecol 1:153–162CrossRefGoogle Scholar
  48. O’Neill RV, Hunsaker CT, Timmins SP, Jackson BL, Jones KB, Riitters KH, Wickham JD (1996) Scale problems in reporting landscape pattern at the regional scale. Landsc Ecol 11:169–180CrossRefGoogle Scholar
  49. Pham DU, Nakagoshi N (2007) Analyzing urban green space pattern and eco-network in Hanoi, Vietnam. Landsc Ecol Eng 3:143–157. doi: 10.1007/s11355-007-0030-3 CrossRefGoogle Scholar
  50. Riitters KH, O’Neill RV, Jones KB (1997) Assessing habitat suitability at multiple scales: a landscape-level approach. Biol Conserv 81:191–202CrossRefGoogle Scholar
  51. Riitters KH, Wickham JD, Vogelmann JE, Jones KB (2000) National land-cover pattern data. Ecology 81:604. Available online, URL: http://www.esapubs.org/archive/ecol/E081/004/metadata.html. Accessed 1 Sept 2008
  52. Riitters KH, Wickham JD, O’Neill RV, Jones KB, Smith ER, Coulston JW, Wade TG, Smith JH (2002) Fragmentation of continental United States forests. Ecosystems 5:815–822CrossRefGoogle Scholar
  53. Romme WH (1982) Fire and landscape diversity in subalpine forests of Yellowstone National Park. Ecol Monogr 52:199–221CrossRefGoogle Scholar
  54. Rookwood P (1995) Landscape planning for biodiversity. Landsc Urban Plan 31:379–385CrossRefGoogle Scholar
  55. Roshier DA, Robertson AI, Kingsford RT, Green DG (2001) Continental-scale interactions with temporary resources may explain the paradox of large populations of desert waterbirds in Australia. Landsc Ecol 16:547–556CrossRefGoogle Scholar
  56. Rowe JS (1961) The level-of-integration concept and ecology. Ecology 42:420–427CrossRefGoogle Scholar
  57. Saunders DA, Briggs SV (2002) Nature grows in straight lines- or does she? What are the consequences of the mismatch between human-imposed linear boundaries and ecosystem boundaries? An Australian example. Landsc Urban Plan 61:71–82CrossRefGoogle Scholar
  58. Saura S, Martínez-Millán J (2001) Sensitivity of landscape pattern metrics to map spatial extent. Photogramm Eng Remote Sens 67:1027–1036Google Scholar
  59. Schneider DC (2001) The rise of the concept of scale in ecology. Bioscience 51:545–553CrossRefGoogle Scholar
  60. Trani MK, Giles RH (1999) An analysis of deforestation: metrics used to describe pattern change. For Ecol Manag 114:459–470CrossRefGoogle Scholar
  61. Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197CrossRefGoogle Scholar
  62. Van Langevelde F (1994) Conceptual integration of landscape planning and landscape ecology, with a focus on the Netherlands. In: Cook EA, Van Lier HN (eds) Landscape planning and ecological networks. Elsevier, Amsterdam, pp 27–69Google Scholar
  63. Wiens JA, Van Horne B, Noon BR (2002) Integrating landscape structure and scale into natural resource management. In: Liu J, Taylor WW (eds) Integrating landscape ecology into natural resource management. Cambridge University Press, Cambridge, pp 23–67Google Scholar
  64. Wilson HB, Keeling MJ (2000) Spatial scales and low-dimensional deterministic dynamics. In: Dieckman U, Law R, Metz JAJ (eds) The geometry of ecological interactions. Cambridge University Press, LondonGoogle Scholar
  65. Wilson J, Low B, Constanza R, Ostrom E (1999) Scale misperceptions and the spatial dynamics of a social-ecological system. Ecol Econ 31:243–257CrossRefGoogle Scholar
  66. Wu J, Shen W, Sun W, Tueller PT (2002) Empirical patterns of the effects of changing scale on landscape metrics. Landsc Ecol 17:761–782CrossRefGoogle Scholar
  67. Xu M, Qi Y, Chen J, Song B (2004) Scale-dependent relationships between landscape structure and microclimate. Plant Ecol 173:39–57CrossRefGoogle Scholar
  68. Zonneveld IS (1995) Land ecology: an introduction of landscape ecology as a base for land evaluation. land management and conservation. SPB Academic, AmsterdamGoogle Scholar

Copyright information

© International Consortium of Landscape and Ecological Engineering and Springer 2008

Authors and Affiliations

  • Emilio Díaz-Varela
    • 1
    • 2
  • Carlos José Álvarez-López
    • 1
    • 2
  • Manuel Francisco Marey-Pérez
    • 1
    • 2
  1. 1.Research Group 1716-Projects and Planning, Department of Agroforestry EngineeringUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Higher Polytechnic SchoolLugoSpain

Personalised recommendations