Advertisement

Study of Crack Interaction Effects Under Thermal Loading by Digital Photoelasticity and Finite Elements

  • A. Vivekanandan
  • K. RameshEmail author
Research paper
  • 47 Downloads

Abstract

The effect of an interacting internal crack on the edge crack in a transient thermal stress field is evaluated using digital photothermoelastic experiments and finite element (FE) analysis. Initially, a transient thermal stress field is simulated using FE analysis for which the thermal boundary conditions are set based on the experimental isochromatic fringes. In this simulated thermal stress field, single edge crack with and without an internal short crack interacting at different configurations are modeled and the non-dimensional Stress Intensity Factor (SIF) values are evaluated at different time intervals. It is observed that the asymmetric and collinear configurations tend to increase the SIF of the edge crack whereas a parallel crack tends to decrease the SIF of the edge crack. For experimental evaluation, specimens with a single edge crack and asymmetric configuration of interacting cracks are considered and the non-dimensional SIF values are evaluated under a thermal stress field generated by edge heating and cooling. The results are compared with those obtained using the FE analysis.

Keywords

Photothermoelasticity Stress intensity factor Transient thermal stress field Interacting crack 

Notes

Acknowledgements

The authors would like to acknowledge Dr. Tarkes Dora Pallicity, Post-Doctoral Fellow in GRK 2078, Karlsruhe Institute of Technology (KIT), Karlsruhe and formerly a member of our group for his help in FE simulations.

References

  1. 1.
    Anderson TL (2017) Fracture mechanics: fundamentals and application, 4th edn. CRC, Boca RatonCrossRefGoogle Scholar
  2. 2.
    Nied HF (1983) Thermal shock fracture in an edge-cracked plate. J Therm Stress 6:217–229.  https://doi.org/10.1080/01495738308942180 CrossRefGoogle Scholar
  3. 3.
    Kokini K, Long MA (1988) Transient thermal fracture of cracked plates. Exp Mech 28:373–381.  https://doi.org/10.1007/BF02325179 CrossRefGoogle Scholar
  4. 4.
    Peizhong Z, Burger CP (1986) Transient thermal stress-intensity factors for short edge cracks with equal depth of crack tips. Eng Fract Mech 24:589–599.  https://doi.org/10.1016/0013-7944(86)90232-8 CrossRefGoogle Scholar
  5. 5.
    Rizk AEFA (1993) A cracked plate under transient thermal stresses due to surface heating. Eng Fract Mech 45:687–696.  https://doi.org/10.1016/0013-7944(93)90274-V CrossRefGoogle Scholar
  6. 6.
    Wei-Chung Wang (1985) Transient thermal stress intensity factors of near surface cracks. Dissertation, Iowa State UniversityGoogle Scholar
  7. 7.
    Zinkle SJ, Was GS (2013) Materials challenges in nuclear energy. Acta Mater 61:735–758.  https://doi.org/10.1016/j.actamat.2012.11.004 CrossRefGoogle Scholar
  8. 8.
    Murtaza UT, Javed Hyder M (2015) The effects of thermal stresses on the elliptical surface cracks in PWR reactor pressure vessel. Theor Appl Fract Mech 75:124–136.  https://doi.org/10.1016/j.tafmec.2014.12.001 CrossRefGoogle Scholar
  9. 9.
    Mazur Z, Hernandez-Rossette A, Garcia-Illescas R, Luna-Ramirez A (2008) Failure analysis of a gas turbine nozzle. Eng Fail Anal 15:913–921.  https://doi.org/10.1016/j.engfailanal.2007.10.009 CrossRefGoogle Scholar
  10. 10.
    Kamaya M, Taheri S (2008) A study on the evolution of crack networks under thermal fatigue loading. Nucl Eng Des 238:2147–2154.  https://doi.org/10.1016/j.nucengdes.2008.01.017 CrossRefGoogle Scholar
  11. 11.
    Qian G, González-Albuixech VF, Niffenegger M (2014) Probabilistic assessment of a reactor pressure vessel subjected to pressurized thermal shocks by using crack distributions. Nucl Eng Des 270:312–324.  https://doi.org/10.1016/j.nucengdes.2013.12.062 CrossRefGoogle Scholar
  12. 12.
    Kachanov M (1993) Elastic solids with many cracks and related problems. In: Hutchinson JW, Wu TY (eds) Advances in applied mechanics. Academic Press, pp 259–445Google Scholar
  13. 13.
    Coules HE (2017) Interaction of surface cracks subjected to non-uniform distributions of stress. Int J Press Vessel Pip 157:20–29.  https://doi.org/10.1016/j.ijpvp.2017.08.002 CrossRefGoogle Scholar
  14. 14.
    Hovanesian JD, Kowalski HC (1967) Similarity in thermoelasticity. Exp Mech 7:82–84.  https://doi.org/10.1007/bf02326711 CrossRefGoogle Scholar
  15. 15.
    Ramesh K, Gupta S, Kelkar AA (1997) Evaluation of stress field parameters in fracture mechanics by photoelasticity -revisited. Eng Fract Mech 56:25–41.  https://doi.org/10.1016/S0013-7944(96)00098-7 CrossRefGoogle Scholar
  16. 16.
    Miskioglu I, Gryzagorides J, Burger CP (1981) Material properties in thermal-stress analysis. Exp Mech 21:295–301.  https://doi.org/10.1007/bf02325769 CrossRefGoogle Scholar
  17. 17.
    ABAQUS Documentation (2012) “Analysis User’s Manual”, Version 6.12Google Scholar
  18. 18.
    Ramesh K, Pathak PM (1999) Role of photoelasticity in evolving discretization schemes for FE analysis. Exp Tech 23:36–38.  https://doi.org/10.1111/j.1747-1567.1999.tb01508.x CrossRefGoogle Scholar
  19. 19.
    Pathak PM, Ramesh K (1999) Validation of finite element modelling through photoelastic fringe contours. Commun Numer Methods Eng 15:229–238.  https://doi.org/10.1002/(SICI)1099-0887(199904)15:4<229::AID-CNM236>3.0.CO;2-L CrossRefzbMATHGoogle Scholar
  20. 20.
    Neethi Simon B, Ramesh K (2010) A simple method to plot photoelastic fringes and phasemaps from finite element results. J Aerosp Sci and Technol 63(2):174–182 http://www.aerojournalindia.com/2010%20contents/Content%20-Aug-10.html Google Scholar
  21. 21.
    Dora Pallicity T, Ramesh K, Mahajan P, Vengadesan S (2016) Numerical modeling of cooling stage of glass molding process assisted by CFD and measurement of residual birefringence. J Am Ceram Soc 99:470–483.  https://doi.org/10.1111/jace.14000 CrossRefGoogle Scholar
  22. 22.
    Fuller JJ, Marotta EE (2001) Thermal contact conductance of metal/polymer joints: an analytical and experimental investigation. J Thermophys Heat Transf 15:228–238.  https://doi.org/10.2514/2.6598 CrossRefGoogle Scholar
  23. 23.
    Vivekanandan A, Ramesh K (2019) Study of interaction effects of asymmetric cracks under biaxial loading using digital photoelasticity. Theor Appl Fract Mech 99:104–117.  https://doi.org/10.1016/j.tafmec.2018.11.011 CrossRefGoogle Scholar
  24. 24.
    Williams ML (1961) The bending stress distribution at the base of a stationary crack. J Appl Mech 28:78–82.  https://doi.org/10.1115/1.3640470 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Atluri SN, Kobayashi AS (1987) Mechanical response of materials. In: Kobayashi AS (ed) Handbook on experimental mechanics. Prentice Hall, New York, pp 1–37Google Scholar
  26. 26.
    Sanford RJ (1979) A critical reexamination of Westergaard method for solving opening mode crack problems. Mech Res Commun 6(5):289–294.  https://doi.org/10.1016/0093-6413(79)90033-8 CrossRefzbMATHGoogle Scholar
  27. 27.
    Ramesh K (2000) PSIF Software. Chennai: Photomechanics Lab, Indian Institute of Technology Madras. Retrieved from https://home.iitm.ac.in/kramesh/psif.html
  28. 28.
    Ramesh K, Mangal SK (1998) Data acquisition techniques in digital photoelasticity: a review. Opt Lasers Eng 30:53–75.  https://doi.org/10.1016/S0143-8166(97)00105-X CrossRefGoogle Scholar
  29. 29.
    Ramesh K, Kasimayan T, Neethi Simon B (2011) Digital photoelasticity - a comprehensive review. J Strain Anal Eng Des 46:245–266.  https://doi.org/10.1177/0309324711401501 CrossRefGoogle Scholar
  30. 30.
    Ramesh K, Deshmukh SS (1996) Three fringe photoelasticity—use of colour image processing hardware to automate ordering of isochromatics. Strain 32(3):79–86.  https://doi.org/10.1111/j.1475-1305.1996.tb01006.x CrossRefGoogle Scholar
  31. 31.
    Ajovalasit A, Barone S, Petrucci G (1995) Towards RGB photoelasticity: full-field automated photoelasticity in white light. Exp Mech 35:193–200.  https://doi.org/10.1007/BF02319657 CrossRefGoogle Scholar
  32. 32.
    Swain D, Thomas BP, Philip J, Pillai SA (2015) Non-uniqueness of the color adaptation techniques in RGB Photoelasticity. Exp Mech 55:1031–1045.  https://doi.org/10.1007/s11340-015-9993-4 CrossRefGoogle Scholar
  33. 33.
    Ramesh K, Pandey A (2018) An improved normalization technique for white light photoelasticity. Opt Lasers Eng 109:7–16.  https://doi.org/10.1016/j.optlaseng.2018.05.004 CrossRefGoogle Scholar
  34. 34.
    Madhu KR, Prasath RGR, Ramesh K (2007) Colour adaptation in three fringe photoelasticity. Exp Mech 47:271–276.  https://doi.org/10.1007/s11340-006-9012-x CrossRefGoogle Scholar
  35. 35.
    Neethi Simon B, Ramesh K (2011) Colour adaptation in three fringe Photoelasticity using a single image. Exp Tech 35:59–65.  https://doi.org/10.1111/j.1747-1567.2010.00646.x CrossRefGoogle Scholar
  36. 36.
    Briñez-de León JC, Restrepo-Martínez A, Branch-Bedoya JW (2019) Computational analysis of Bayer colour filter arrays and demosaicking algorithms in digital photoelasticity. Opt Lasers Eng 122:195–208.  https://doi.org/10.1016/j.optlaseng.2019.06.004 CrossRefGoogle Scholar
  37. 37.
    Ramesh K, Ramakrishnan V, Ramya C (2015) New initiatives in single-colour image-based fringe order estimation in digital photoelasticity. J Strain Anal Eng Des 50(7):488–504CrossRefGoogle Scholar
  38. 38.
    Ajovalasit A, Petrucci G, Scafidi M (2015) Review of RGB photoelasticity. Opt Lasers Eng 68:58–73.  https://doi.org/10.1016/j.optlaseng.2014.12.008 CrossRefGoogle Scholar
  39. 39.
    Ramakrishnan V, Ramesh K (2017) Scanning schemes in white light Photoelasticity – part I: critical assessment of existing schemes. Opt Lasers Eng 92:129–140.  https://doi.org/10.1016/j.optlaseng.2016.06.016 CrossRefGoogle Scholar
  40. 40.
    Ramakrishnan V, Ramesh K (2017) Scanning schemes in white light photoelasticity – part II: novel fringe resolution guided scanning scheme. Opt Lasers Eng 92:141–149.  https://doi.org/10.1016/j.optlaseng.2016.05.010 CrossRefGoogle Scholar
  41. 41.
    Ramesh K, Hariprasad MP, Ramakrishnan V (2015) Robust multidirectional smoothing of isoclinic parameter in digital photoelasticity. Opt Eng 54:1–9.  https://doi.org/10.1117/1.OE.54.8.081205 CrossRefGoogle Scholar
  42. 42.
    Ramesh K (2017) DigiTFP® Software. Chennai: Photomechanics Lab, Indian Institute of Technology Madras. Retrieved from https://home.iitm.ac.in/kramesh/dtfp.html
  43. 43.
    Simon BN, Prasath RGR, Ramesh K (2009) Transient thermal stress intensity factors of bimaterial interface cracks using refined three-fringe photoelasticity. J Strain Anal Eng Des 44:427–438.  https://doi.org/10.1243/03093247jsa506 CrossRefGoogle Scholar
  44. 44.
    Hariprasad MP, Ramesh K (2018) Analysis of contact zones from whole field isochromatics using reflection photoelasticity. Opt Lasers Eng 105:86–92.  https://doi.org/10.1016/j.optlaseng.2018.01.005 CrossRefGoogle Scholar
  45. 45.
    Irwin GR (1958) Discussion of paper by A. Wells and D. Post, the dynamic stress distribution surrounding a running crack-a photoelastic analysis. Proc SESA 16(1):93–95MathSciNetGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2019

Authors and Affiliations

  1. 1.Department of Applied MechanicsIIT MadrasChennaiIndia

Personalised recommendations