Advertisement

Experimental Mechanics

, Volume 59, Issue 5, pp 733–747 | Cite as

Quasi-Static and High Strain Rate Simple Shear Characterization of Soft Polymers

  • K. Upadhyay
  • A. Bhattacharyya
  • G. SubhashEmail author
  • D. E. Spearot
Article

Abstract

The simple shear response of soft polymers under large deformation (>50%) and strain rates spanning 10−3 – 103 s−1 is characterized by developing quasi-static and split-Hopkinson pressure bar based single-pulse dynamic simple shear experiments rooted in continuum mechanics fundamentals. Cross-linked polydimethylsiloxane (PDMS) is chosen as a model material. By examining the evolution of stress, strain and strain rate, the latter two parameters measured using two-dimensional digital image correlation (DIC), it is demonstrated that dynamic simple shear deformation consists of four distinct stages: momentum diffusion, inertia effect, steady-state material response, and strain rate decay. By isolating the unsteady and steady-state deformation stages, inertia-free material response is captured under a uniform strain rate. It is shown that the shear response of PDMS is nearly linear with a weakly rate-sensitive shear modulus in the investigated strain rate range. Further, by analyzing the DIC strain-field and comparing the kinematic experimental results with those predicted by classical continuum mechanics, it is demonstrated that the proposed experiments not only achieve a nearly theoretical simple shear state that is uniform across the specimen, but also allow for post-test validation of individual experiments based on these criteria.

Keywords

PDMS Simple shear Large deformations Strain rate sensitivity Split-Hopkinson pressure bar (SHPB) Digital image correlation (DIC) 

Notes

Acknowledgements

This research was supported by the National Science Foundation under Grant Nos. CMMI-1634188 and CMMI-1762791 to the University of Florida, Gainesville, USA.

References

  1. 1.
    Roberts JC, Merkle AC, Biermann PJ et al (2007) Computational and experimental models of the human torso for non-penetrating ballistic impact. J Biomech 40:125–136.  https://doi.org/10.1016/j.jbiomech.2005.11.003 CrossRefGoogle Scholar
  2. 2.
    Merkle AC, Ward EE, OʼConnor JV, Roberts JC (2008) Assessing Behind Armor Blunt Trauma (BABT) Under NIJ Standard-0101.04 Conditions Using Human Torso Models. J Trauma Inj Infect Crit Care 64:1555–1561.  https://doi.org/10.1097/TA.0b013e318160ff3a CrossRefGoogle Scholar
  3. 3.
    Chatelin S, Deck C, Willinger R (2013) An anisotropic viscous hyperelastic constitutive law for brain material finite-element modeling. J Biorheol 27:26–37.  https://doi.org/10.1007/s12573-012-0055-6 CrossRefGoogle Scholar
  4. 4.
    Joldes GR, Wittek A, Miller K (2009) Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation. Med Image Anal 13:912–919.  https://doi.org/10.1016/j.media.2008.12.001 CrossRefGoogle Scholar
  5. 5.
    Groves RB, Coulman SA, Birchall JC, Evans SL (2013) An anisotropic, hyperelastic model for skin: Experimental measurements, finite element modelling and identification of parameters for human and murine skin. J Mech Behav Biomed Mater 18:167–180.  https://doi.org/10.1016/j.jmbbm.2012.10.021 CrossRefGoogle Scholar
  6. 6.
    Misra S, Ramesh KT, Okamura AM (2008) Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review. Presence Teleoperators Virtual Environ 17:463–491.  https://doi.org/10.1162/pres.17.5.463 CrossRefGoogle Scholar
  7. 7.
    Jennifer M, Cronin DS, Worswick M, et al (2001) Numerical Modelling of a Simplified Surrogate Leg Subject To an Anti-Personnel Blast Mine. In: Proceedings of the 19th International Symposium of Ballistics. Interlaken, pp 913–919Google Scholar
  8. 8.
    Kohandel M, Sivaloganathan S, Tenti G, Darvish K (2005) Frequency dependence of complex moduli of brain tissue using a fractional Zener model. Phys Med Biol 50:2799–2805.  https://doi.org/10.1088/0031-9155/50/12/005 CrossRefGoogle Scholar
  9. 9.
    Parnaik Y, Beillas P, Demetropoulos CK et al (2004) The influence of surrogate blood vessels on the impact response of a physical model of the brain. Stapp Car Crash J 48:259–277Google Scholar
  10. 10.
    Doorly MC, Gilchrist MD (2006) The use of accident reconstruction for the analysis of traumatic brain injury due to head impacts arising from falls. Comput Methods Biomech Biomed Engin 9:371–377.  https://doi.org/10.1080/10255840601003551 CrossRefGoogle Scholar
  11. 11.
    Kleiven S (2007) Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J 51:81–114Google Scholar
  12. 12.
    Harrigan TP, Roberts JC, Ward EE, Merkle AC (2010) Correlating Tissue Response with Anatomical Location of mTBI Using a Human Head Finite Element Model under Simulated Blast Conditions. In: IFMBE Proceedings. pp 18–21Google Scholar
  13. 13.
    Normand V, Lootens DL, Amici E et al (2000) New insight into agarose gel mechanical properties. Biomacromolecules 1:730–738.  https://doi.org/10.1021/bm005583j CrossRefGoogle Scholar
  14. 14.
    Miller K (2005) Method of testing very soft biological tissues in compression. J Biomech 38:153–158.  https://doi.org/10.1016/j.jbiomech.2004.03.004 CrossRefGoogle Scholar
  15. 15.
    Forte AE, Galvan S, Manieri F et al (2016) A composite hydrogel for brain tissue phantoms. Mater Des 112:227–238.  https://doi.org/10.1016/j.matdes.2016.09.063 CrossRefGoogle Scholar
  16. 16.
    Pervin F, Chen WW (2009) Dynamic mechanical response of bovine gray matter and white matter brain tissues under compression. J Biomech 42:731–735.  https://doi.org/10.1016/j.jbiomech.2009.01.023 CrossRefGoogle Scholar
  17. 17.
    Naarayan SS, Subhash G (2017) Wave propagation in ballistic gelatine. J Mech Behav Biomed Mater 68:32–41.  https://doi.org/10.1016/j.jmbbm.2017.01.030 CrossRefGoogle Scholar
  18. 18.
    Subhash G, Liu Q, Moore DF et al (2011) Concentration Dependence of Tensile Behavior in Agarose Gel Using Digital Image Correlation. Exp Mech 51:255–262.  https://doi.org/10.1007/s11340-010-9354-2 CrossRefGoogle Scholar
  19. 19.
    Singh A, Lu Y, Chen C, M Cavanaugh J (2006) Mechanical properties of spinal nerve roots subjected to tension at different strain rates. J Biomech 39:1669–1676.  https://doi.org/10.1016/j.jbiomech.2005.04.023 CrossRefGoogle Scholar
  20. 20.
    Shim VPW, Liu JF, Lee VS (2006) A Technique for Dynamic Tensile Testing of Human Cervical Spine Ligaments. Exp Mech 46:77–89.  https://doi.org/10.1007/s11340-006-5865-2 CrossRefGoogle Scholar
  21. 21.
    Yang LM, Shim VPW, Lim CT (2000) A visco-hyperelastic approach to modelling the constitutive behaviour of rubber. Int J Impact Eng 24:545–560.  https://doi.org/10.1016/S0734-743X(99)00044-5 CrossRefGoogle Scholar
  22. 22.
    Sasson A, Patchornik S, Eliasy R et al (2012) Hyperelastic mechanical behavior of chitosan hydrogels for nucleus pulposus replacement-Experimental testing and constitutive modeling. J Mech Behav Biomed Mater 8:143–153.  https://doi.org/10.1016/j.jmbbm.2011.12.008 CrossRefGoogle Scholar
  23. 23.
    Rashid B, Destrade M, Gilchrist MD (2014) Mechanical characterization of brain tissue in tension at dynamic strain rates. J Mech Behav Biomed Mater 33:43–54.  https://doi.org/10.1016/j.jmbbm.2012.07.015 CrossRefGoogle Scholar
  24. 24.
    Ogden RW (1972) Large Deformation Isotropic Elasticity: On the Correlation of Theory and Experiment for Compressible Rubberlike Solids. Proc R Soc A Math Phys Eng Sci 328:567–583.  https://doi.org/10.1098/rspa.1972.0096 CrossRefzbMATHGoogle Scholar
  25. 25.
    Ogden RW, Saccomandi G, Sgura I (2004) Fitting hyperelastic models to experimental data. Comput Mech 34:484–502.  https://doi.org/10.1007/s00466-004-0593-y CrossRefzbMATHGoogle Scholar
  26. 26.
    Upadhyay K, Subhash G, Spearot D (2019) Thermodynamics-based stability criteria for constitutive equations of isotropic hyperelastic solids. J Mech Phys Solids 124:115–142.  https://doi.org/10.1016/j.jmps.2018.09.038 MathSciNetCrossRefGoogle Scholar
  27. 27.
    Arbogast KB, Thibault KL, Scott Pinheiro B et al (1997) A high-frequency shear device for testing soft biological tissues. J Biomech 30:757–759.  https://doi.org/10.1016/S0021-9290(97)00023-7 CrossRefGoogle Scholar
  28. 28.
    Bilston LE, Liu Z, Phan-Thien N (2001) Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38:335–345Google Scholar
  29. 29.
    Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 51:396–409.  https://doi.org/10.1109/TUFFC.2004.1295425 CrossRefGoogle Scholar
  30. 30.
    Jiang Y, Li G, Qian L-X et al (2015) Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis. Biomech Model Mechanobiol 14:1119–1128.  https://doi.org/10.1007/s10237-015-0658-0 CrossRefGoogle Scholar
  31. 31.
    Nasseri S, Bilston LE, Phan-Thien N (2002) Viscoelastic properties of pig kidney in shear, experimental results and modelling. Rheol Acta 41:180–192.  https://doi.org/10.1007/s003970200017 CrossRefGoogle Scholar
  32. 32.
    Hrapko M, van Dommelen JAW, Peters GWM, Wismans JSHM (2008) Characterisation of the mechanical behaviour of brain tissue in compression and shear. Biorheology 45:663–676.  https://doi.org/10.3233/BIR-2008-0512 Google Scholar
  33. 33.
    Saraf H, Ramesh KT, Lennon AM et al (2007) Measurement of the Dynamic Bulk and Shear Response of Soft Human Tissues. Exp Mech 47:439–449.  https://doi.org/10.1007/s11340-007-9052-x CrossRefGoogle Scholar
  34. 34.
    Trexler MM, Lennon AM, Wickwire AC et al (2011) Verification and implementation of a modified split Hopkinson pressure bar technique for characterizing biological tissue and soft biosimulant materials under dynamic shear loading. J Mech Behav Biomed Mater 4:1920–1928.  https://doi.org/10.1016/j.jmbbm.2011.06.008 CrossRefGoogle Scholar
  35. 35.
    Pasumarthy RKA, Tippur HV (2016) Mechanical and optical characterization of a tissue surrogate polymer gel. Polym Test 55:219–229.  https://doi.org/10.1016/j.polymertesting.2016.08.004 CrossRefGoogle Scholar
  36. 36.
    G’Sell C, Boni S, Shrivastava S (1983) Application of the plane simple shear test for determination of the plastic behaviour of solid polymers at large strains. J Mater Sci 18:903–918.  https://doi.org/10.1007/BF00745590 CrossRefGoogle Scholar
  37. 37.
    Subhash G, Kwon J, Mei R, Moore DF (2012) Non-Newtonian Behavior of Ballistic Gelatin at High Shear Rates. Exp Mech 52:551–560.  https://doi.org/10.1007/s11340-011-9513-0 CrossRefGoogle Scholar
  38. 38.
    Van Sligtenhorst C, Cronin DS, Wayne Brodland G (2006) High strain rate compressive properties of bovine muscle tissue determined using a split Hopkinson bar apparatus. J Biomech 39:1852–1858.  https://doi.org/10.1016/j.jbiomech.2005.05.015 CrossRefGoogle Scholar
  39. 39.
    Zanon AG, Cardoso PN, Moreira CS, da Silva Nunes LC (2015) Mechanical behavior of silicone rubber reinforced with parallel fibers of nylon under simple shear: a study on artificial soft tissue. Proceedings of the 23rd ABCM International Congress of Mechanical Engineering, Rio de JaneiroGoogle Scholar
  40. 40.
    Nunes LCS (2011) Mechanical characterization of hyperelastic polydimethylsiloxane by simple shear test. Mater Sci Eng A 528:1799–1804.  https://doi.org/10.1016/j.msea.2010.11.025 CrossRefGoogle Scholar
  41. 41.
    Nunes LCS (2010) Shear modulus estimation of the polymer polydimethylsiloxane (PDMS) using digital image correlation. Mater Des 31:583–588.  https://doi.org/10.1016/j.matdes.2009.07.012 CrossRefGoogle Scholar
  42. 42.
    Rashid B, Destrade M, Gilchrist MD (2013) Mechanical characterization of brain tissue in simple shear at dynamic strain rates. J Mech Behav Biomed Mater 28:71–85.  https://doi.org/10.1016/j.jmbbm.2013.07.017 CrossRefGoogle Scholar
  43. 43.
    Kwon J, Subhash G, Mei R, Heger I (2011) An optical technique for determination of rheological properties of gelatin. J Rheol (N Y N Y) 55:951–964.  https://doi.org/10.1122/1.3599676 CrossRefGoogle Scholar
  44. 44.
    Nie X, Prabhu R, Chen WW et al (2011) A Kolsky Torsion Bar Technique for Characterization of Dynamic Shear Response of Soft Materials. Exp Mech 51:1527–1534.  https://doi.org/10.1007/s11340-011-9481-4 CrossRefGoogle Scholar
  45. 45.
    Gilat A (2000) Torsional Kolsky Bar Testing. Mater Park OH ASM Int 2000 505–515Google Scholar
  46. 46.
    Sanborn B, Nie X, Chen W, Weerasooriya T (2012) High Strain Rate Pure Shear and Axial Compressive Response of Porcine Lung Tissue. J Appl Mech 80:011029.  https://doi.org/10.1115/1.4007222 CrossRefGoogle Scholar
  47. 47.
    Puglisi G, Saccomandi G (2016) Multi-scale modelling of rubber-like materials and soft tissues: An appraisal. Proc R Soc A Math Phys Eng Sci 472:20160060.  https://doi.org/10.1098/rspa.2016.0060 CrossRefGoogle Scholar
  48. 48.
    Saccomandi G (2018) Ut vis sic tensio. Theor Appl Mech 45:1–15.  https://doi.org/10.2298/TAM170703011S CrossRefGoogle Scholar
  49. 49.
    Nie X, Song B, Ge Y et al (2009) Dynamic Tensile Testing of Soft Materials. Exp Mech 49:451–458.  https://doi.org/10.1007/s11340-008-9133-5 CrossRefGoogle Scholar
  50. 50.
    Pedraza E, Brady A-C, Fraker CA, Stabler CL (2013) Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications. J Biomater Sci Polym Ed 24:1041–1056.  https://doi.org/10.1080/09205063.2012.735097 CrossRefGoogle Scholar
  51. 51.
    Mohanty S, Larsen LB, Trifol J et al (2015) Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Mater Sci Eng C 55:569–578.  https://doi.org/10.1016/j.msec.2015.06.002 CrossRefGoogle Scholar
  52. 52.
    Payne T, Mitchell S, Halkon B et al (2016) Development of a synthetic human thigh impact surrogate for sports personal protective equipment testing. Proc Inst Mech Eng Part P J Sport Eng Technol 230:5–16.  https://doi.org/10.1177/1754337115582294 CrossRefGoogle Scholar
  53. 53.
    Payne T, Mitchell S, Bibb R, Waters M (2015) The evaluation of new multi-material human soft tissue simulants for sports impact surrogates. J Mech Behav Biomed Mater 41:336–356.  https://doi.org/10.1016/j.jmbbm.2014.09.018 CrossRefGoogle Scholar
  54. 54.
    Gilchrist MD, Rashid B, Murphy JG, Saccomandi G (2013) Quasi-static deformations of biological soft tissue. Math Mech Solids 18:622–633.  https://doi.org/10.1177/1081286513485770 MathSciNetCrossRefGoogle Scholar
  55. 55.
    Wex C, Arndt S, Stoll A et al (2015) Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: A review. Biomed Tech 60:577–592.  https://doi.org/10.1515/bmt-2014-0146 CrossRefGoogle Scholar
  56. 56.
    Mihai LA, Budday S, Holzapfel GA et al (2017) A family of hyperelastic models for human brain tissue. J Mech Phys Solids 106:60–79.  https://doi.org/10.1016/j.jmps.2017.05.015 MathSciNetCrossRefGoogle Scholar
  57. 57.
    Boni S, G’Sell C, Weynant E, Haudin JM (1982) Microscopic in situ observation of the plastic deformation of polybutene-1 films under simple shear. Polym Test 3:3–24.  https://doi.org/10.1016/0142-9418(82)90009-5 CrossRefGoogle Scholar
  58. 58.
    Bleich F (1952) Buckling strength of metal structures, 1st edn. McGraw-Hill, New YorkGoogle Scholar
  59. 59.
    Wirthl D, Pichler R, Drack M et al (2017) Instant tough bonding of hydrogels for soft machines and electronics. Sci Adv 3:1–10.  https://doi.org/10.1126/sciadv.1700053 CrossRefGoogle Scholar
  60. 60.
    Wang M, Kornfield JA (2012) Measuring shear strength of soft-tissue adhesives. J Biomed Mater Res Part B Appl Biomater 100B:618–623.  https://doi.org/10.1002/jbm.b.31981 CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of Technology JodhpurKarwarIndia

Personalised recommendations