Advertisement

New Development of Digital Volume Correlation for the Study of Fractured Materials

  • V. Valle
  • P. Bokam
  • A. Germaneau
  • S. Hedan
Article
  • 155 Downloads

Abstract

This study reports on Digital Volume Correlation and its limitation in the case of fracture mechanics. Due to its sensitivity, detecting the crack opening in sub pixel level is extremely difficult and in-turn it does not provide an accurate estimation of the stress intensity factors. To address these limitations an improved DVC method was proposed to solve the uncertainty problems in the vicinity of cracks. The method (H-DVC) was developed using classical minimization process, including Heaviside functions in the kinematical field representation. Initial simulation has been performed for opening and sliding modes using classical DVC and proposed H-DVC. From these tests, crack detection limit has be evaluated to a jump of 0.1 voxels. A direct comparison of performances of DVC and H-DVC has been carried out on a fractured polymer sample to detect the kinematics discontinuity and to highlight the significant contribution of this novel approach. Furthermore, the local Crack Opening Displacement and local Stress Intensity Factor (KI) are calculated for mode-I loading (opening mode activated) condition. Parallelized computation of the proposed H-DVC method gave an access to high-resolution details, which indeed are not observable using classical DVC method. This allows a better evaluation of the distribution of localization phenomena in volumes under loading.

Keywords

Digital volume correlation Fracture Full field measurement Cracks High resolution 

Notes

Acknowledgements

This work was partially funded by the French Government program “Investissements d’Avenir” (EQUIPEX GAP, reference ANR-11-EQX-0018).

References

  1. 1.
    Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39:217–226.  https://doi.org/10.1007/BF02323555 CrossRefGoogle Scholar
  2. 2.
    Smith TS, Bay BK, Rashid MM (2002) Digital volume correlation including rotational degrees of freedom during minimization. Exp Mech 42:272–278.  https://doi.org/10.1007/BF0241098 CrossRefGoogle Scholar
  3. 3.
    Franck C, Hong S, Maskarinec SA et al (2007) Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp Mech 47:427–438.  https://doi.org/10.1007/s11340-007-9037-9 CrossRefGoogle Scholar
  4. 4.
    Germaneau A, Doumalin P, Dupré J-C (2007) Full 3D measurement of strain field by scattered light for analysis of structures. Exp Mech 47:523–532CrossRefGoogle Scholar
  5. 5.
    Roux S, Hild F, Viot P, Bernard D (2008) Three-dimensional image correlation from X-ray computed tomography of solid foam. Compos Part Appl Sci Manuf 39:1253–1265.  https://doi.org/10.1016/j.compositesa.2007.11.011 CrossRefGoogle Scholar
  6. 6.
    Vitone C, Cotecchia F, Viggiani G, Hall SA (2013) Strain fields and mechanical response of a highly to medium fissured bentonite clay. Int J Numer Anal Meth Geomech 37:1510–1534.  https://doi.org/10.1002/nag.2095 CrossRefGoogle Scholar
  7. 7.
    Bay BK (2008) Methods and applications of digital volume correlation. J Strain Anal Eng Des 43:745–760.  https://doi.org/10.1243/03093247JSA436 CrossRefGoogle Scholar
  8. 8.
    Hall SA, Desrues J, Viggiani G, Besuelle P, Ando E (2012) Experimental characterisation of (localised) deformation phenomena in granular geomaterials from sample down to inter-and intra-grain scales. Procedia IUTAM 4:54–65.  https://doi.org/10.1016/j.piutam.2012.05.007 CrossRefGoogle Scholar
  9. 9.
    Brault R, Germaneau A, Dupré JC et al (2013) In-situ analysis of laminated composite materials by X-ray micro-computed tomography and digital volume correlation. Exp Mech 53:1143.  https://doi.org/10.1007/s11340-013-9730-9 CrossRefGoogle Scholar
  10. 10.
    Madi K, Tozzi G, Zhang QH et al (2013) Computation of full-field displacements in a scaffold implant using digital volume correlation and finite element analysis. Med Eng Phys 35:1298–1312.  https://doi.org/10.1016/j.medengphy.2013.02.001 CrossRefGoogle Scholar
  11. 11.
    Roberts BC, Perilli E, Reynolds KJ (2014) Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: a literature review. J Biomech 47:923–934.  https://doi.org/10.1016/j.jbiomech.2014.01.001 CrossRefGoogle Scholar
  12. 12.
    Forsberg F, Mooser R, Arnold M et al (2008) 3D micro-scale deformations of wood in bending: synchrotron radiation μCT data analyzed with digital volume correlation. J Struct Biol 164:255–262.  https://doi.org/10.1016/j.jsb.2008.08.004 CrossRefGoogle Scholar
  13. 13.
    Barranger Y, Doumalin P, Dupre J-C et al (2009) Evaluation of three-dimensional and two-dimensional full displacement fields of a single edge notch fracture mechanics specimen, in light of experimental data using X-ray tomography. Eng Fract Mech 76:2371–2238.  https://doi.org/10.1016/j.engfracmech.2009.08.001 CrossRefGoogle Scholar
  14. 14.
    Réthoré J, Tinnes J-P, Roux S et al (2008) Extended three-dimensional digital image correlation (X3D-DIC). Comptes Rendus Mécanique 336:643–649.  https://doi.org/10.1016/j.crme.2008.06.006 CrossRefzbMATHGoogle Scholar
  15. 15.
    Limodin N, Réthoré J, Buffière J-Y et al (2009) Crack closure and stress intensity factor measurements in nodular graphite cast iron using three-dimensional correlation of laboratory X-ray microtomography images. Acta Mater 57:4090–4101.  https://doi.org/10.1016/j.actamat.2009.05.005 CrossRefGoogle Scholar
  16. 16.
    Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20:062001.  https://doi.org/10.1088/0957-0233/20/6/062001 CrossRefGoogle Scholar
  17. 17.
    Reu P (2012) Hidden components of DIC: calibration and shape function - part 1. Exp Tech 36:3–5.  https://doi.org/10.1111/j.1747-1567.2012.00821.x Google Scholar
  18. 18.
    Valle V, Laou L, Léandry I et al (2017) Crack analysis in mudbricks under compression using specific development of stereo-digital image correlation. Exp Mech.  https://doi.org/10.1007/s11340-017-0363-2
  19. 19.
    Valle V, Hedan S, Cosenza P et al (2015) Digital image correlation development for the study of materials including multiple crossing cracks. Exp Mech 55:379–391.  https://doi.org/10.1007/s11340-014-9948-1 CrossRefGoogle Scholar
  20. 20.
    Wang T, Jiang Z, Kemao Q et al (2016) GPU accelerated digital volume correlation. Exp Mech 56:297–309.  https://doi.org/10.1007/s11340-015-0091-4 CrossRefGoogle Scholar
  21. 21.
    Sutton MA, McNeill SR, Jang J, Babai M (1988) Effects of subpixel image restoration on digital correlation error estimates. Opt Eng 27(10):271070.  https://doi.org/10.1117/12.7976778 CrossRefGoogle Scholar
  22. 22.
    Reu P (2012) Hidden components of 3D-DIC: interpolation and matching - part 2. Exp Tech 36:3–4.  https://doi.org/10.1111/j.1747-1567.2012.00838.x Google Scholar
  23. 23.
    Bruck HA, McNeill SR, Sutton MA, Peters WH (1989) Digital image correlation using Newton-Raphson method of partial differential correction. Exp Mech 29:261–267.  https://doi.org/10.1007/BF02321405 CrossRefGoogle Scholar
  24. 24.
    Pan B, Wang B, Wu D, Lubineau G (2014) An efficient and accurate 3D displacements tracking strategy for digital volume correlation. Opt Lasers Eng 58:126–135.  https://doi.org/10.1016/j.optlaseng.2014.02.003 CrossRefGoogle Scholar
  25. 25.
    Lekien F, Marsden J (2005) Tricubic interpolation in three dimensions. Int J Numer Methods Eng 63:455–471.  https://doi.org/10.1002/nme.1296 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Germaneau A, Doumalin P, Dupré J-C (2008) Comparison between X-ray micro-computed tomography and optical scanning tomography for full 3D strain measurement by digital volume correlation. NDT E Int 41:407–415.  https://doi.org/10.1016/j.ndteint.2008.04.001 CrossRefGoogle Scholar
  27. 27.
    Réthoré J, Hild F, Roux S (2007) Shear-band capturing using a multiscale extended digital image correlation technique. Comput Methods Appl Mech Eng 196:5016–5030.  https://doi.org/10.1016/j.cma.2007.06.019 CrossRefzbMATHGoogle Scholar
  28. 28.
    Sutton MA (2008) Digital image correlation for shape and deformation measurements. In: Sharpe WN (ed) Springer handbook of experimental solid mechanics. Springer US, Boston, MA, pp 565–600CrossRefGoogle Scholar
  29. 29.
    Williams ML (1957) On the stress distribution at the base of a stationary crack. J Appl Mech 24:109–114MathSciNetzbMATHGoogle Scholar
  30. 30.
    Ashby MF (2011) Materials selection in mechanical design. Butterworth-Heinemann, Burlington, MAGoogle Scholar
  31. 31.
    Friedrich K (1978) Analysis of crack propagation in isotactic polypropylene with different morphology. In: Fischer EW, Müller FH, Bonart R (eds) Physik der Duroplaste und anderer Polymerer. Steinkopff, Darmstadt, pp 103–112CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2018

Authors and Affiliations

  1. 1.Institut Pprime UPR 3346CNRS – Université de Poitiers – ISAE-ENSMAFuturoscope ChasseneuilFrance
  2. 2.IC2MP, UMR 7285, CNRS-Université de Poitiers, HydrASA, Ecole Nationale Supérieure d’Ingénieurs de POITIERSPoitiersFrance

Personalised recommendations