Experimental Mechanics

, Volume 58, Issue 8, pp 1265–1280 | Cite as

Validation of Registration Techniques Applied to XRD Signals for Stress Evaluations in Titanium Alloys

  • B. Voillot
  • J.-L. Lebrun
  • R. Billardon
  • F. Hild


To estimate stresses near specimen surfaces, X-ray diffraction (XRD) is applied to titanium alloys. Some of these alloys are difficult to study since they are composed of various phases of different proportions, shapes and scales. For millimetric probed volumes, such multi-phase microstructures induce shallow and noisy diffraction signals. Two peak registration techniques are introduced and validated thanks to tensile tests performed on two titanium alloy samples.


DIC In-situ test Integrated methods Stress analyses XRD 



This work was funded by Safran Landing Systems. The authors acknowledge Pierre Mella for providing Ti64 alloy and useful discussions on XRD analyses. The authors also thank Adam Cox for providing Ti5553 alloy samples and Thierry Bergey for electropolishing them.

Supplementary material (9.8 mb)
(ZIP 9.76 MB)


  1. 1.
    Hill M (2016) Engineering residual stress in aerospace forgings. Mater Res Proc 2:61–66Google Scholar
  2. 2.
    Cox A, Villain-Chastre J-P, Turner S, Jackson M (2015) The effect of finish milling on the surface integrity and surface microstructure in Ti-5Al-5Mo-5V-3Cr. In: 13th world conference on titaniumGoogle Scholar
  3. 3.
    Aeby-Gautier E, Settefrati A, Bruneseaux F, Appolaire B, Denand B, Dehmas M, Geandier G, Boulet P (2013) Isothermal α formation in β metastable titanium alloys. J Alloys Compd 577S:439–443CrossRefGoogle Scholar
  4. 4.
    Lütjering G, Williams JC (2007) Titanium. Springer, BerlinGoogle Scholar
  5. 5.
    Guillemot N, Lartigue C, Billardon R, Mawussi B (2010) Prediction of the endurance limit taking account of the microgeometry after finishing milling. Int J Interact Des Manuf 4:239–249CrossRefGoogle Scholar
  6. 6.
    Souto-Lebel A, Guillemot N, Lartigue C, Billardon R (2011) Characterization and influence of defect size distribution induced by ball-end finishing milling on fatigue life. In: 1st CIRP conference on surface integrity (CSI), vol 19, pp 343–348Google Scholar
  7. 7.
    E837-13a ASTM (2015) Standard test method for determining residual stresses by the hole-drilling strain-gage method. ASTM internationalGoogle Scholar
  8. 8.
    Prime M (2001) Cross-sectional mapping of residual stresses by measuring the surface contour after a cut. J Eng Mater Technol 123(2):162–168CrossRefGoogle Scholar
  9. 9.
    Reed Reed E C, Viens J A (1960) The influence of surface residual stress on fatigue limit of titanium. J Eng Ind 82(1):82–76Google Scholar
  10. 10.
    Fitzpatrick ME, Fry AT, Holdway P, Kandil FA, Shackleton J, Suominen L (2005) Determination of residual stresses by x-ray diffraction - issue 2. ISSN 1744–3911Google Scholar
  11. 11.
    Freour S, Gloaguen D, François M, Guillen R, Girard E (2002) Determination of the macroscopic elastic constants of a phase embedded in a multiphase polycrystal - application to the beta-phase of Ti17 titanium based alloy. Mater Sci Forum Trans Tech Publ Inc 404–407:723–728CrossRefGoogle Scholar
  12. 12.
    15305 EN (2009) Non-destructive testing, test method for residual stress analysis by X-ray diffraction. In: AFNORGoogle Scholar
  13. 13.
    Cullity B D (1957) Elements of x-ray diffraction. Am J Phys 25:394CrossRefGoogle Scholar
  14. 14.
    Hauk V (1997) Structural and residual stress analysis by non destructive methods: evaluation, application, assessment. Elsevier Science, AmsterdamzbMATHGoogle Scholar
  15. 15.
    Pfeiffer W, Reisacher E (2016) Evaluation of thickness and residual stress of shallow surface regions from diffraction profiles. Mater Res Proc 2:317–322Google Scholar
  16. 16.
    Lefebvre F, François M, Cacot J, Hemery C, Le-Bec P, Baumhauer E, Bouscaud D, Bergey T, Blaize D, Gloaguen D, Lebrun J L, Cosson A, Kubler R, Cheynet Y, Daniel E, Michaud H, Monvoisin JC, Blanchet P, Allain P, Mrini Y, Sprauel J M, Goudeau P, Barbarin P, Charles C, Le Roux JM, Seiler W, Fischer C, Desmas L, Ouakka A, Moya MJ, Bordiec Y (2011) External reference samples for residual stress analysis by x-ray diffraction. Mater Sci Forum 681:215–222CrossRefGoogle Scholar
  17. 17.
    Suominen L, Rickert T, Send S (2016) Residual stress measurement of Ti-metal samples by means of XRD with Ti and Cu radiation. Mater Res Proc 2:61–66Google Scholar
  18. 18.
    Withers P-J, Daymondb M-R, Johnsonb MW (2001) The precision of diffraction peak location. J Appl Cryst 34(Part 6):737–743CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Leptos by Bruker.
  21. 21.
    Noyan IC, Cohen JB (1987) Residual stresses: measurements by diffraction and interpretation. Springer, New YorkCrossRefGoogle Scholar
  22. 22.
    Geandier G, Renault P-O, Le Bourhis E, Goudeau Ph, Faurie D, Le Bourlot C, Djemia Ph, Castelnau O, Cherif S (2010) Elastic strain distribution in metallic filmpolymer substrate composites. Appl Phys Lett 96:041905Google Scholar
  23. 23.
    Geandier G, Thiaudière D, Randriamazaoro R N, Chiron R, Djaziri S, Lamongie B, Diot Y, Le Bourhis E, Renault P O, Goudeau P, Bouaffad A, Castelnau O, Faurie D, Hild F (2010) Development of a synchrotron biaxial tensile device for in-situ characterization of thin films mechanical response. Rev Sci Instrum 81(103903)Google Scholar
  24. 24.
    Rekik M, Hubert O, Daniel L, Raka B, Mella P, Aimedieu P (2013) Dispositif de mesure du comportement magnéto-mécanique d’un alliage de fer-silicium sous chargement mécanique multiaxial. In: Congrès Fran?ais de MécaniqueGoogle Scholar
  25. 25.
    Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New YorkGoogle Scholar
  26. 26.
    Djaziri S, Renault PO, Hild F, Le Bourhis E, Goudeau P, Thiaudière D, Faurie D (2011) Combined synchrotron x-ray and image-correlation analyses of biaxially deformed w/cu nanocomposite thin films on kapton. J Appl Cryst 44:1071–1079CrossRefGoogle Scholar
  27. 27.
    Djaziri S, Faurie D, Le Bourhis E, Goudeau Ph, Renault PO, Mocuta C, Thiaudière D, Hild F (2013) Investigation of the elastic-plastic transition of nanostructured thin film under controlled biaxial deformation. Thin Solid Films 530:30–34CrossRefGoogle Scholar
  28. 28.
    Hild F, Roux S (2006) Digital image correlation: from measurement to identification of elastic properties—a review. Strain 42:69–80CrossRefGoogle Scholar
  29. 29.
    Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140(1-4):141–157CrossRefzbMATHGoogle Scholar
  30. 30.
    Leclerc H, Périé JN, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical properties, volume LNCS 5496, pages 161–171. Springer, BerlinGoogle Scholar
  31. 31.
    Réthoré J (2010) A fully integrated noise robust strategy for the identification of constitutive laws from digital images. Int J Num Meth Eng 84(6):631–660CrossRefzbMATHGoogle Scholar
  32. 32.
    Réthoré J, Muhibullah T. Elguedj, Coret M, Chaudet P, Combescure A (2013) Robust identification of elasto-plastic constitutive law parameters from digital images using {3D} kinematics. Int J Solids Struct 50 (1):73–85CrossRefGoogle Scholar
  33. 33.
    Beaubier B, Dufour JE, Hild F, Roux S, Lavernhe-Taillard S, Lavernhe-Taillard K (2014) CAD-based calibration of a 3D-DIC system: principle and application on test and industrial parts. Exp Mech 54(3):329–341CrossRefGoogle Scholar
  34. 34.
    Dufour J-E, Beaubier B, Hild F, Roux S (2015) CAD-based displacement measurements. Principle and first validations. Exp Mech 55(9):1657–1668CrossRefGoogle Scholar
  35. 35.
    Dufour J-E, Hild F, Roux S (2015) Shape, displacement and mechanical properties from isogeometric multiview stereocorrelation. J Strain Anal 50(7):470–487CrossRefGoogle Scholar
  36. 36.
    Hild F, Bouterf A, Chamoin L, Mathieu F, Neggers J, Pled F, Tomičević Z, Roux S (2016) Toward 4d mechanical correlation. Adv Mech Simul Eng Sci 3(1):1–26CrossRefGoogle Scholar
  37. 37.
    Boyer R, Briggs R (2005) The use of beta titanium alloys in the aerospace industry. J Mater Eng Perform 14:681–685CrossRefGoogle Scholar
  38. 38.
    E112-96 (1997) Standard test method for determining average grain size. In: AFNOR, pp 227–49Google Scholar
  39. 39.
    Lu J (1996) Handbook of measurement of residual stresses. Society for Experimental MechanicsGoogle Scholar
  40. 40.
    Voillot B, Hild F, Lebrun JL, Billardon R (2015) Evaluation of residual stresses due to mechanical treatment of Ti5553 alloy via XRD. In: Proc. 13th world conference on titanium, chapter 268Google Scholar
  41. 41.
    Duval T, Villechaise P, Andrieu S (2011) Mechanical properties and strain mechanisms analysis in Ti5553 titanium alloy. The Minerals, Metals & Materials Society (TMS)Google Scholar
  42. 42.
    Voillot B, Aimedieu P, Mella P, Lebrun JL, Hild F (2015) Evaluation des contraintes residuelles induites par traitements mecaniques dans un alliage de titane bi-phase par trois methodes de depouillement differentes. In: Proc. Congrès MécamatGoogle Scholar
  43. 43.
    Bertin M, Hild F, Roux S, Mathieu F, Leclerc H, Aimedieu P (2016) Integrated digital image correlation applied to elasto-plastic identification in a biaxial experiment. J Strain Anal 51(2):118–131CrossRefGoogle Scholar
  44. 44.
    Leyens C, Peters M (2003) Titanium and titanium alloys: fundamentals and applications. Wiley, New YorkCrossRefGoogle Scholar
  45. 45.
    Fréour S, Gloaguen D, François M, Guillen R (2003) Influence of a two-phase microstructure on XEC and XRD stress analysis. Rev Métal 12:1185–1191CrossRefGoogle Scholar
  46. 46.
    Bruno G, Dunn BD (2004) Surface and bulk residual stress in Ti6Al4V welded aerospace tanks. Pressure Vessel Technol 126(3):284–292CrossRefGoogle Scholar
  47. 47.
    Hild F, Roux S (2012) Digital image correlation. In: Optical Methods for Solid Mechanics. A Full-Field Approach, P. Rastogi and E. Hack (eds.), pages 183–228. Wiley-VCH, WeinheimGoogle Scholar
  48. 48.
    ISO/IEC guide 99-12:2007 (2007) International vocabulary of metrology - basic and general concepts and associated terms, VIM. International Organization for Standardization, GenevaGoogle Scholar
  49. 49.
    Martin G (2012) Simulation numerique multi-echelles du comportement mecanique des alliages de titane beta-metastable Ti5553 et Ti17. PhD thesis, Ecole Nationale Superieure des Mines de ParisGoogle Scholar
  50. 50.
    Fréour S, Lacoste E, François M, Guillén R (2011) Determining ti-17 β-phase single-crystal elasticity constants through x-ray diffraction and inverse scale transition model. In: Materials Science Forum, vol 681, pp 97–102. Trans Tech PublGoogle Scholar
  51. 51.
    Herbig M (2011) D short fatigue crack investigation in beta titanium alloys using phase and diffraction contrast tomography. PhD thesis, INSA LyonGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2018

Authors and Affiliations

  1. 1.Safran Landing SystemsVélizy-VillacoublayFrance
  2. 2.LMTENS Paris-Saclay/CNRS/Université Paris-SaclayCachan CedexFrance

Personalised recommendations