Experimental Mechanics

, Volume 58, Issue 6, pp 919–939 | Cite as

Identification of Heterogeneous Elastoplastic Behaviors Using the Constitutive Equation Gap Method

  • T. MadaniEmail author
  • Y. Monerie
  • S. Pagano
  • C. Pelissou
  • B. Wattrisse


Recent developments in imaging techniques now facilitate local field measurements (e.g. strain, temperature, etc.). In this study, we identify the spatial distribution of material properties and local stress fields using an inverse identification method based on the constitutive equation gap (CEG). The CEG concept is based both on minimization of a cost function equal to the sum of the potential and complementary energies, and on the deviation between the measured and computed strain fields. We propose a new approach for identifying heterogeneous property fields (mechanical parameters and stress) using a secant elastoplastic tensor and a measured strain field obtained by full-field measurement. The reliability of the method is checked using finite element simulation data as reference full-field measurements. The method is then applied on noisy displacement fields to assess its robustness. Finally, the developed inverse method is tested on real measured data.


Inverse method Material identification Elastoplasticity Full field measurement 


  1. 1.
    Wattrisse B, Chrysochoos A, Muracciole J-M, Nemoz-Gaillard M (2001) Analysis of strain localization during tensile tests by digital image correlation. Exp Mech 41:29–39CrossRefzbMATHGoogle Scholar
  2. 2.
    Grédiac M (2004) The use of full-field measurement methods in composite material characterization: interest and limitations. Composites Part A: Appl Sci Manufac 35:751–761CrossRefGoogle Scholar
  3. 3.
    Chalal H, Avril S, Pierron F, Meraghni F (2006) Experimental identification of a nonlinear model for composites using the grid technique coupled to the virtual fields method. Composites Part A: Appl Sci Manufac 37(2):315–325CrossRefGoogle Scholar
  4. 4.
    Avril S, Pierron F (2007) General framework for the identification of constitutive parameters from full-field measurements in linear elasticity. Int J Solids Struct 44(14–15):4978–5002CrossRefzbMATHGoogle Scholar
  5. 5.
    Rossi M, Pierron F (2012) On the use of simulated experiments in designing tests for material characterization from full-field measurements. Int J Solids Struct 49(3–4):420–435CrossRefGoogle Scholar
  6. 6.
    Avril S, Bonnet M, Bretelle A-S, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Experiment Mech 48(4):381–402CrossRefGoogle Scholar
  7. 7.
    Kavanagh KT, Clough RW (1971) Finite element applications in the characterization of elastic solids. Int J Solids Struct 7:11–23CrossRefzbMATHGoogle Scholar
  8. 8.
    Meuwissen MHH, Oomens CWJ, Baaijens FPT, Petterson R, Janssen JD (1998) Determination of the elasto-plastic properties of aluminum using a mixed numerical-experimental method. J Mater Process Technol 75(1-3):204211CrossRefGoogle Scholar
  9. 9.
    Cooreman S, Lecompte D, Sol H, Vantomme J, Debruyne D (2008) Identification of mechanical material behavior through inverse modeling and DIC. Exp Mech 48(4):421–433CrossRefzbMATHGoogle Scholar
  10. 10.
    Passieux J-C, Bugarin F., David C., Périé J-N and Robert L., Multiscale displacement field measurementusing digital image correlation: application to the identification of elastic properties. Experiment Mech, volume: 55, Issue: 1, Pages: 121-137, 2015Google Scholar
  11. 11.
    Mathieu F., Leclerc H., Hild F. and Roux S., Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC. Experiment Mech, volume: 55, Issue: 1, Pages: 105-119, 2015Google Scholar
  12. 12.
    Guery A, Hild F, Latourte F, Roux S (2016) Identification of crystal plasticity parameters using DIC measurements and weighted FEMU. Mech Mater 100:55–71CrossRefGoogle Scholar
  13. 13.
    Siddiqui M, Khan SZ, Khan MA, ShahzadK M, Khan KA, Nisar S, Noman D (2017) A projected finite element update method for inverse identification of material constitutive parameters in transversely isotropic laminates. Experiment Mech 57(5):755–772CrossRefGoogle Scholar
  14. 14.
    Bui HD, Constantinescu A, Maigre H (2004) Numerical identification of linear cracks in 2D elastodynamics using the instantaneous reciprocity gap. Inverse Problems 20:993–1001MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sun Y, Guo Y, Ma F (2016) The reciprocity gap functional method for the inverse scattering problem for cavities. Appl Anal 95(6):1327–1346MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Feissel P, Allix O (2007) Modified constitutive relation error identification strategy for transient dynamics with corrupted data: the elastic case. Comput Eng Appl Mech Eng 196:1968–1983CrossRefzbMATHGoogle Scholar
  17. 17.
    Florentin E, Lubineau G (2011) Using constitutive equation gap method for identification of elastic material parameters: technical insights and illustrations. Int J Interact Design Manufac (IJIDeM) 5(4):227–234CrossRefGoogle Scholar
  18. 18.
    Merzouki T, Nouri H, Roger F (2014) Direct identification of nonlinear damage behavior of composite materials using the constitutive equation gap method. Int J Mech Sci 89:487–499CrossRefGoogle Scholar
  19. 19.
    Grédiac M, Toussaint E, Pierron F (2002) Special virtual fields for the direct determination of material parameters with the virtual fields method.1 - Principle and definition. Int J Solids Struct 39:2691–2705CrossRefzbMATHGoogle Scholar
  20. 20.
    Grédiac M, Pierron F (2006) Applying the virtual field method to the identification of elasto-plastic constitutive parameters. Int J Plast 22:602–627CrossRefzbMATHGoogle Scholar
  21. 21.
    Kim J-H, Pierron F, Wisnom MR, Syed-Muhamad K (2007) Identification of the local stiffness reduction of a damaged composite plate using the virtual fields method. Composites Part A: Appl Sci Manufac 38(9):2065–2075CrossRefGoogle Scholar
  22. 22.
    Avril S, Huntley JM, Pierron F, Steele DD (2008) 3D heterogeneous stiffness reconstruction using MRI and the virtual fields method. Exp Mech 48(4):479–494CrossRefGoogle Scholar
  23. 23.
    Pierron F, Avril S, The TV (2010) Extension of the virtual fields method to elastoplastic material identification with cyclic loads and kinematic hardening. Int J Solids Struct 47(22–23):2993–3010CrossRefzbMATHGoogle Scholar
  24. 24.
    Grama SN, Subramanian SJ, Pierron F (2015) On the identifiability of Anand visco-plastic model parameters using the virtual fields method. Acta Mater 86:118–136CrossRefGoogle Scholar
  25. 25.
    Rossi M, Pierron F, Štamborská M (2016) Application of the virtual fields method to large strain anisotropic plasticity. Int J Solids Struct 97–98:322–335CrossRefGoogle Scholar
  26. 26.
    Wang P, Pierron F, Rossi M, Lava P, Thomsen OT (2016) Optimised experimental characterisation of polymeric foam material using DIC and the virtual fields method. Strain 52(1):59–79CrossRefGoogle Scholar
  27. 27.
    Marek A, Davis FM, Pierron F (2017) Sensitivity-based virtual fields for computational mechanics. Comput Mech 60(3):409–431MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Roux S, Hild F, Pagano S (2005) A stress scale in full-field identification procedures: a diffuse stress gauge. Eur J Mech - A/Solids 24:442451CrossRefzbMATHGoogle Scholar
  29. 29.
    Ben AM, Périé J-N, Guimard J-M, Hild F, Roux S (2011) On the identification and validation of an anisotropic damage model using full-field measurements. Int J Damage Mech 20(8):1130–1150CrossRefGoogle Scholar
  30. 30.
    Ladevèze P (1983) And and Leguillon D., Error estimate procedure in the finite element method and applications. SIAM. J Num Anal 20:485–509CrossRefzbMATHGoogle Scholar
  31. 31.
    Constantinescu A (1995) On the identification of elastic modulus from displacement force boundary measurements. Inverse Problems Eng 1:293–315CrossRefGoogle Scholar
  32. 32.
    Geymonat G, Pagano S (2003) Identification of mechanical properties by displacement field measurement: a variational approach. Meccanica 38:535–545MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Latourte F, Chrysochoos A, Pagano S, Wattrisse B (2008) Elastoplastic behavior identification for heterogeneous loadings and materials. Exp Mech 48:435–449CrossRefGoogle Scholar
  34. 34.
    Simo J, Hughes T (1998) Computational inelasticity. Springer, VerlagzbMATHGoogle Scholar
  35. 35.
    Bornert M, Brémand F, Doumalin P, Dupré M, Fazzini J-C, Grédiac M, Hild F, Mistou S, Molimard J, Orteu J-J, Robert L, Surrel Y, Vacher P, Wattrisse B (2008) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49:353–370CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2018

Authors and Affiliations

  1. 1.IRSN/PSN-RES/SEMIA/LPTMInstitut de Radioprotection et de Sûreté NucléaireSaint-Paul-lez-Durance CedexFrance
  2. 2.LMGCUniversité de Montpellier, CNRSMontpellierFrance
  3. 3.Laboratoire de micromécanique et intégrité des structures (MIST)IRSN-CNRS-Université de MontpellierMontpellierFrance

Personalised recommendations