In Situ Micromechanical Characterization of Metallic Glass Microwires under Torsional Loading

  • S. Fan
  • C. Jiang
  • H. Lu
  • F. Li
  • Y. Yang
  • Y. Shen
  • Y. Lu


Small-scale metallic glasses have many applications in microelectromechanical systems (MEMS) and sensors which require good mechanical properties. Bending, tensile and compression properties of metallic glasses at micro/nano-scale have been well investigated previously. In this work, by developing a micro robotic system, we investigated the torsional behavior of Fe-Co based metallic glass microwires inside a scanning electron microscope (SEM). Benefiting from the in situ SEM imaging capability, the fracture behavior of metallic glass microwire has been uncovered clearly. Through the postmortem fractographic analysis, it can be revealed that both spiral stripes and shear bands contributed to the fracture mechanism of the microscale metallic glass. Plastic deformation of the microwires include both homogenous and inhomogeneous plastic strain, which began with the liquid-like region, then a crack formed because of shear bands and propagated along the spiral direction. Although the metallic glass microwire broke in brittle mode, the shear strain was not lower than that of conventional metal wires. Moreover, we found an inverse relationship between the plastic strain and the loading rate.


Micromechanical testing Metallic glass Microwire Torsion Fracture behavior 



This work was supported by the Shenzhen Science and Technology Innovation Committee under the grant JCYJ20160401100358589, the National Natural Science Foundation of China (Grant Nos. 51301147, 61773326), the Research Grants Council of the Hong Kong Special Administrative Region of China (Grant Nos. CityU 11209914, CityU 11278716).

Supplementary material

11340_2018_464_MOESM1_ESM.docx (2.9 mb)
ESM 1 (DOCX 2962 kb)

(MP4 2111 kb)

11340_2018_464_MOESM3_ESM.mp4 (2.4 mb)
ESM 3 (MP4 2413 kb)

(MP4 673 kb)

11340_2018_464_MOESM5_ESM.mp4 (3.4 mb)
ESM 5 (MP4 3504 kb)

(MP4 825 kb)


  1. 1.
    Telford M (2004) The case for bulk metallic glass. Mater Today 7(3):36–43CrossRefGoogle Scholar
  2. 2.
    Peter W et al (2002) Fatigue behavior of Zr 52.5 Al 10 Ti 5 cu 17.9 Ni 14.6 bulk metallic glass. Intermetallics 10(11):1125–1129CrossRefGoogle Scholar
  3. 3.
    Zhang Z, Eckert J, Schultz L (2004) Fatigue and fracture behavior of bulk metallic glass. Metall Mater Trans A 35(11):3489–3498CrossRefGoogle Scholar
  4. 4.
    Wang WH (2012) The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci 57(3):487–656CrossRefGoogle Scholar
  5. 5.
    Schroers J (2013) Bulk metallic glasses. Phys Today 66(2):32CrossRefGoogle Scholar
  6. 6.
    Jiang QK, Liu P, Ma Y et al (2012) Super elastic strain limit in metallic glass films. Sci Rep 2(11):852CrossRefGoogle Scholar
  7. 7.
    Gosvami NN, Nalam PC, Exarhos AL et al (2014) Direct torsional actuation of microcantilevers using magnetic excitation. Appl Phys Lett 105(9):093101CrossRefGoogle Scholar
  8. 8.
    Lewandowski JJ, Wang WH, Greer AL (2005) Intrinsic plasticity or brittleness of metallic glasses. Philos Mag Lett 85(2):77–87CrossRefGoogle Scholar
  9. 9.
    Mukai T et al (2002) Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension. Scr Mater 46(1):43–47CrossRefGoogle Scholar
  10. 10.
    Schuster BE et al (2008) Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater 56(18):5091–5100CrossRefGoogle Scholar
  11. 11.
    Silva EC et al (2006) Size effects on the stiffness of silica nanowires. Small 2(2):239–243MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sharma P et al (2007) Nano-fabrication with metallic glass—an exotic material for nano-electromechanical systems. Nanotechnology 18(3):035302CrossRefGoogle Scholar
  13. 13.
    Phan TA et al (2015) Current sensors using Fe–B–Nd–Nb magnetic metallic glass micro-cantilevers. Microelectron Eng 135:28–31CrossRefGoogle Scholar
  14. 14.
    Zhang Z et al (2003) Fracture mechanisms in bulk metallic glassy materials. Phys Rev Lett 91(4):045505MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wright WJ, Saha R, Nix WD (2001) Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater Trans 42(4):642–649CrossRefGoogle Scholar
  16. 16.
    Conner R et al (2003) Shear bands and cracking of metallic glass plates in bending. J Appl Phys 94(2):904–911CrossRefGoogle Scholar
  17. 17.
    Conner RD et al (2004) Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater 52(8):2429–2434CrossRefGoogle Scholar
  18. 18.
    Shen H et al (2015) Tensile properties and fracture reliability of melt-extracted Gd-rich amorphous wires. Mater Res 18:66–71CrossRefGoogle Scholar
  19. 19.
    Banerjee A et al (2016) Fracto-emission in lanthanum-based metallic glass microwires under quasi-static tensile loading. J Appl Phys 119(15):155102CrossRefGoogle Scholar
  20. 20.
    Sun H et al (2016) Tensile strength reliability analysis of Cu48Zr48Al4 amorphous microwires. Metals 6(12):296CrossRefGoogle Scholar
  21. 21.
    Xing L-Q et al (2001) Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys Rev B 64(18):180201CrossRefGoogle Scholar
  22. 22.
    Schroers J, Johnson WL (2004) Ductile bulk metallic glass. Phys Rev Lett 93(25):255506CrossRefGoogle Scholar
  23. 23.
    Das J et al (2005) “Work-hardenable” ductile bulk metallic glass. Phys Rev Lett 94(20):205501CrossRefGoogle Scholar
  24. 24.
    Zberg B et al (2009) Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics. Acta Mater 57(11):3223–3231CrossRefGoogle Scholar
  25. 25.
    Guo H et al (2007) Tensile ductility and necking of metallic glass. Nat Mater 6(10):735CrossRefGoogle Scholar
  26. 26.
    Schuster B et al (2008) Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater 56(18):5091–5100CrossRefGoogle Scholar
  27. 27.
    Greer JR et al (2005) Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53(6):1821–1830CrossRefGoogle Scholar
  28. 28.
    Uchic MD et al (2004) Sample dimensions influence strength and crystal plasticity. Science 305(5686):986–989CrossRefGoogle Scholar
  29. 29.
    Han XD et al (2007) Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett 7(2):452–457CrossRefGoogle Scholar
  30. 30.
    Han X et al (2007) Low-temperature in situ large-strain plasticity of silicon nanowires. Adv Mater 19(16):2112–2118CrossRefGoogle Scholar
  31. 31.
    Wang L et al (2013) In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat Commun 4:2413CrossRefGoogle Scholar
  32. 32.
    Shang W et al (2016) Vision-based nano robotic system for high-throughput non-embedded cell cutting. Sci Rep 6:22534Google Scholar
  33. 33.
    Shen Y et al (2015) Multidirectional image sensing for microscopy based on a rotatable robot. Sensors 15(12):31566–31580CrossRefGoogle Scholar
  34. 34.
    Wan W et al (2016) Surface defect detection of magnetic microwires by miniature rotatable robot inside SEM. AIP Adv 6(9):095309CrossRefGoogle Scholar
  35. 35.
    Shen Y et al (2016) Automatic sample alignment under microscopy for 360° imaging based on the nanorobotic manipulation system. IEEE T Robot 33(1):220–226Google Scholar
  36. 36.
    Jiang C, Lu H, Cao K et al (2017) In situ SEM torsion test of metallic glass microwires based on micro robotic manipulation. Scanning 2017:1–7Google Scholar
  37. 37.
    Guan P et al (2010) Stress-temperature scaling for steady-state flow in metallic glasses. Phys Rev Lett 104(20):205701CrossRefGoogle Scholar
  38. 38.
    Argon AS (1979) Plastic deformation in metallic glasses. Acta Metall 27(1):47–58CrossRefGoogle Scholar
  39. 39.
    Lu Z et al (2014) Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses. Phys Rev Lett 113(4):045501CrossRefGoogle Scholar
  40. 40.
    Zhang ZF et al (2003) Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater 51(4):1167–1179CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringCity University of Hong KongKowloonChina
  2. 2.Center for Advanced Structural Materials (CASM), Shenzhen Research InstituteCity University of Hong KongShenzhenChina
  3. 3.Centre for Robotics and Automation, Shenzhen Research InstituteCity University of Hong KongShenzhenChina

Personalised recommendations