Experimental Mechanics

, Volume 58, Issue 3, pp 475–486 | Cite as

Crack Analysis in Mudbricks under Compression Using Specific Development of Stereo-Digital Image Correlation

  • V. Valle
  • L. Laou
  • I. Léandry
  • S. Yotte
  • S. Rossignol
  • S. Hedan
Article

Abstract

This study reports on the stereo digital image correlation (SDIC) method and its extension in the case of fracture analysis. The aim of this work is to propose an improvement to the SDIC method for solving uncertainty problems in the vicinity of a discontinuous displacement field (cracks). It was developed using the classical minimization process, and the kinematical displacement field was enriched by a Heaviside function (H-SDIC). After a short presentation of the entire process used, some experimental tests were performed to demonstrate the performances of this new algorithm. Finally, an application of fracture detection and displacement field measurement on mudbricks is shown, thus validating the efficiency and the robustness of the proposed method.

Keywords

Stereo correlation Digital image correlation Fracture Full field measurement Mudbrick Cracks 

References

  1. 1.
    Gonzalez J, Knauss WG (1998) Strain inhomogeneity and discontinuous crack growth in a particulate composite. J Mech Phys Solids 4610:1981–1995CrossRefMATHGoogle Scholar
  2. 2.
    Chao YJ, Luo PF, Kalthoff J (1998) An experimental study of the deformation fields around a propagating crack tip. Exp Mech 382:79–85CrossRefGoogle Scholar
  3. 3.
    Helm J (2008) Digital image correlation for specimens with multiple growing cracks. Exp Mech 48:753–762CrossRefGoogle Scholar
  4. 4.
    McNeill SR, Peters WH, Sutton MA (1987) Estimation of stress intensity factor by digital image correlation. Eng Fract Mech 28(1):101–112CrossRefGoogle Scholar
  5. 5.
    Sutton MA, Helm JD, Boone ML (2001) Experimental study of crack growth in thin sheet 2024-T3 aluminum under tension-torsion loading. Int J Fract 109:285–301CrossRefGoogle Scholar
  6. 6.
    Wei Z, Deng X, Sutton MA, Yan J, Cheng CS, Zavattieri P (2011) Modeling of mixed-mode crack growth in ductile thin sheets under combined in-plane and out-of-plane loading. Eng Fract Mech 78(17):3082–3101CrossRefGoogle Scholar
  7. 7.
    Fagerholt E, Børvik T, Hopperstad OS (2013) Measuring discontinuous displacement fields in cracked specimens using digital image correlation with mesh adaptation and crack-path optimization. Opt Lasers Eng 51(3):299–310CrossRefGoogle Scholar
  8. 8.
    Cárdenas-Garcia JF, Yao HG, Zheng S (1995) 3D reconstruction of objects using stereo imaging. Opt Lasers Eng 22(3):193–213CrossRefGoogle Scholar
  9. 9.
    Harvent J, Coudrin B, Brèthes L, Orteu JJ, Devy M (2015) Shape measurement using a new multi-step stereo-DIC algorithm that preserves sharp edges. Exp Mech 55(1):167–176CrossRefGoogle Scholar
  10. 10.
    Pan Z, Xia S, Gdoutou A, Ravichandran G (2015) Diffraction-assisted image correlation for three-dimensional surface profiling. Exp Mech 55(1):155–165CrossRefGoogle Scholar
  11. 11.
    McNeill SR, Sutton MA, Miao Z, Ma J (1997) Measurement of surface profile using digital image correlation. Exp Mech 37(1):13–20CrossRefGoogle Scholar
  12. 12.
    Valle V, Hedan S, Cosenza P, Fauchille AL, Berjane M (2015) Digital image correlation development for the study of materials including multiple crossing cracks. Exp Mech 55(2):379–391CrossRefGoogle Scholar
  13. 13.
    Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements. Springer ISBN 978-0-387-78747-3Google Scholar
  14. 14.
    Reu P (2012) Hidden components of 3D-DIC: Interpolation and matching – part 1. Exp Tech 36:3–5Google Scholar
  15. 15.
    Léandry I, Brèque C, Valle V (2012) Calibration of structured light projection system: development to large dimension objects. Opt Lasers Eng 50(3):373–379CrossRefGoogle Scholar
  16. 16.
    Léandry I. (2012) Adaptation de la méthode de projection de franges pour la mesure de relief de grands objets et pour la modélisation anthropométrique : Application à l’étude de flotteurs sous pression et au suivi de pathologie de l’abdomen. Thèse de l’Université de Poitiers, http://theses.univ-poitiers.fr/notice/view/22242
  17. 17.
    Bretagne N, Valle V, Dupré JC (2005) Development of the marks tracking technique for strain field and volume variation measurements. NDT&E Int 38(4):290–298CrossRefGoogle Scholar
  18. 18.
    Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):1–17CrossRefGoogle Scholar
  19. 19.
    Reu P (2012) Hidden components of 3D-DIC: Interpolation and matching – part 2. Exp Tech 36(3):3–4Google Scholar
  20. 20.
    Fauchille AL, Hedan S, Valle V, Pret D, Cabrera J, Cosenza P (2016) Multi-scale study on the deformation and fracture evolution of a clay-rock sample subjected to desiccation. Appl Clay Sci 132–133:251–260CrossRefGoogle Scholar
  21. 21.
    Houben H, Guillaud H (1989) Traité de construction en terre. Ed Parenthèses ISBN 2-86364-161-1Google Scholar
  22. 22.
    Fitzmaurice R (1958) Manual on Stabilised Soil. Construction for Housing United Nations New YorkGoogle Scholar
  23. 23.
    Paul WL, Taylor PA (2008) A comparison of occupant comfort and satisfaction between a green building and a conventional building. Build Environ 43:1858–1870CrossRefGoogle Scholar
  24. 24.
    Aubert JE, Maillard P, Morel JC, Al Rafii M (2016) Towards a simple compressive strength test for earth bricks? Mater Struct 49(5):1641–1654CrossRefGoogle Scholar
  25. 25.
    Taylor P, Fuller RJ, Luther MB (2008) Energy use and thermal comfort in a rammed earth office building. Energ Buildings 40:793–800CrossRefGoogle Scholar
  26. 26.
    Mostafa M, Uddin N (2016) Experimental analysis of compressed earth block (CEB) with banana fibers resisting flexural and compression forces. Case Stud Constr Mater 5:53–63CrossRefGoogle Scholar
  27. 27.
    Morel JC, P’kla A, Di Benedetto H (2003) Essai in situ sur blocs de terre comprimé, Interprétation en compression ou traction de l’essai de flexion en trios points. Revue française de génie civil 7(2):221–237Google Scholar

Copyright information

© Society for Experimental Mechanics 2017

Authors and Affiliations

  • V. Valle
    • 1
  • L. Laou
    • 2
  • I. Léandry
    • 2
  • S. Yotte
    • 2
  • S. Rossignol
    • 3
  • S. Hedan
    • 4
  1. 1.Université de Poitiers, CNRS UPR 3346, Institut PPRIMEChasseneuil CedexFrance
  2. 2.Université de Limoges, GEMHEgletonsFrance
  3. 3.Université de Limoges, CNRS, ENSCI, SPCTS, UMR7315Limoges CedexFrance
  4. 4.Université de Poitiers, CNRS UMR 7285 IC2MP, HydrASAEcole Nationale Supérieure d’Ingénieurs de POITIERSPoitiers CedexFrance

Personalised recommendations