Experimental Mechanics

, Volume 57, Issue 9, pp 1349–1358 | Cite as

Development of Methodology with Excellent Reproducibility for Evaluating Stretch-Flangeability Using a Sheared-Edge Tensile Test

  • J. I. Yoon
  • J. Jung
  • J. H. Ryu
  • K. Lee
  • H. S. Kim


Stretch-flangeability is an important formability factor for advanced high-strength steels (AHSS) when manufacturing automotive parts. However, the reproducibility of the hole expansion test (HET), a standard testing method established by the international organization for standardization, is quite poor compared with other mechanical testing methods. In this study, we propose a new method, the sheared-edge tensile test (SETT), for evaluating stretch-flangeability with excellent reproducibility. SETT takes into account the deformation behavior during the HET and the critical extrinsic factors influencing the hole expansion ratio (HER). The correlation between the sheared-edge surface characteristics, the tensile properties of the SETT specimen, and stretch-flangeability were investigated to gain in-depth understanding of the proposed evaluation method. Although the correlation between HER and the post-uniform elongation of the SETT specimen with an HER >80% was ambiguous, the SETT results exhibited good reproducibility, and the stretch-flangeability indicated by HER tended to increase linearly with increases in the post-uniform elongation of the SETT specimen. Furthermore, the roughness of the sheared-edge surface had a significant effect on the local deformation behavior of the materials. The proposed method requires only a small amount of specimen, as compared with the HET and can evaluate stretch-flangeability with good reproducibility.


Hole expansion ratio Sheared-edge tension Edge fracture sensitivity Tensile test Digital image correlation 



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2014R1A2A1A10051322) and POSCO (2016Y029).


  1. 1.
    Mayyas AT, Qattawi A, Mayyas AR, Omar MA (2012) Life cycle assessment-based selection for a sustainable lightweight body-in-white design. Energy 39:412–425. doi: 10.1016/j.energy.2011.12.033 CrossRefGoogle Scholar
  2. 2.
    Mayyas A, Qattawi A, Omar M, Shan D (2012) Design for sustainability in automotive industry: A comprehensive review. Renew Sust Energ Rev 16:1845–1862. doi: 10.1016/j.rser.2012.01.012 CrossRefGoogle Scholar
  3. 3.
    Joost WJ (2012) Reducing vehicle weight and improving U.S. energy efficiency using integrated computational materials engineering. JOM US 64:1032–1038. doi: 10.1007/s11837-012-0424-z Google Scholar
  4. 4.
    Fonstein N (2015) Advanced high strength sheet steels: physical metallurgy, design, processing, and properties. Springer, SwitzerlandCrossRefGoogle Scholar
  5. 5.
    Kalashami AG, Kermanpur A, Najafizadeh A, Mazaheri Y (2016) Development of a high strength and ductile Nb-bearing dual phase steel by cold-rolling and intercritical annealing of the ferrite-martensite microstructures. Mater Sci Eng A 658:355–366. doi: 10.1016/j.msea.2016.02.028 CrossRefGoogle Scholar
  6. 6.
    Li ZC, Ding H, Cai ZH (2015) Mechanical properties and austenite stability in hot-rolled 0.2C–1.6/3.2Al–6Mn–Fe TRIP steel. Mater Sci Eng A 639:559–566. doi: 10.1016/j.msea.2015.05.061 CrossRefGoogle Scholar
  7. 7.
    Bouaziz O, Allain S, Scott CP, Cugy P, Barbier D (2011) High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr Opin Solid St M 15:141–168. doi: 10.1016/j.cossms.2011.04.002 CrossRefGoogle Scholar
  8. 8.
    Bouaziz O, Zurob H, Huang M (2013) Driving force and logic of development of advanced high strength steels for automotive applications. Steel Res Int 84:937–947. doi: 10.1002/srin.201200288 Google Scholar
  9. 9.
    Sohn SS, Choi K, Kwak J-H, Kim NJ, Lee S (2014) Novel ferrite–austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms. Acta Mater 78:181–189. doi: 10.1016/j.actamat.2014.06.059 CrossRefGoogle Scholar
  10. 10.
    Sohn SS, Song H, Suh B-C, Kwak J-H, Lee B-J, Kim NJ, Lee S (2015) Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization. Acta Mater 96:301–310. doi: 10.1016/j.actamat.2015.06.024 CrossRefGoogle Scholar
  11. 11.
    Zargaran A, Kim HS, Kwak JH, Kim NJ (2015) Effect of C content on the microstructure and tensile properties of lightweight ferritic Fe-8Al-5Mn-0.1 Nb alloy. Met Mater Int 21:79–84. doi: 10.1007/s12540-015-1009-5 CrossRefGoogle Scholar
  12. 12.
    Nezhadfar PD, Zarei-Hanzaki A, Sohn SS, Abedi HR (2016) Characterization of twin-like structure in a ferrite-based lightweight steel. Met Mater Int 22:810–816. doi: 10.1007/s12540-016-6113-7 CrossRefGoogle Scholar
  13. 13.
    Lee DB, Yadav P (2015) Oxidation of high Mn TWIP steels in reheating furnace conditions. Korean J Met Mater 53:859–866. doi: 10.3365/KJMM.2015.53.12.859 CrossRefGoogle Scholar
  14. 14.
    Kim E-Y, Kim SI, Choi S-H (2016) Effect of strength coefficient of bainite on micromechanical deformation and failure behaviors of hot-rolled 590FB steel during uniaxial tension. Korean J Met Mater 54:808–816. doi: 10.3365/KJMM.2016.54.11.808 CrossRefGoogle Scholar
  15. 15.
    Jha G, Das S, Sinha S, Lodh A, Haldar A (2013) Design and development of precipitate strengthened advanced high strength steel for automotive application. Mater Sci Eng A 561:394–402. doi: 10.1016/j.msea.2012.10.047 CrossRefGoogle Scholar
  16. 16.
    Jha G, Das S, Lodh A, Haldar A (2012) Development of hot rolled steel sheet with 600 MPa UTS for automotive wheel application. Mater Sci Eng A 552:457–463. doi: 10.1016/j.msea.2012.05.070 CrossRefGoogle Scholar
  17. 17.
    Kamibayashi K, Tanabe Y, Takemoto Y, Shimizu I, Senuma T (2012) Influence of Ti and Nb on the strength-ductility-hole expansion ratio balance of hot-rolled low-carbon high-strength steel sheets. ISIJ Int 52:151–157. doi: 10.2355/isijinternational.52.151 CrossRefGoogle Scholar
  18. 18.
    Lee J, Lee S-J, De Cooman BC (2012) Effect of micro-alloying elements on the stretch-flangeability of dual phase steel. Mater Sci Eng A 536:231–238. doi: 10.1016/j.msea.2012.01.003 CrossRefGoogle Scholar
  19. 19.
    Kim JI, Ryu JH, Lee SW, Lee K, Heo Y-U, Suh D-W (2016) Influence of the initial microstructure on the reverse transformation kinetics and microstructural evolution in transformation-induced plasticity–assisted steel. Metall Mater Trans A 47:5352–5361. doi: 10.1007/s11661-016-3672-7 CrossRefGoogle Scholar
  20. 20.
    Lee K, Ryu JH, Lee SW, Lee WH, Kim JI, Suh D-W (2016) Influence of the initial microstructure on the heat treatment response and tensile properties of TRIP-assisted steel. Metall Mater Trans A 47:5259–5265. doi: 10.1007/s11661-016-3699-9 CrossRefGoogle Scholar
  21. 21.
    ISO (2009) Metallic materials — method of hole expanding test. International Organization for Standardization. http://www.iso.org. Accessed 08 Jan 2017
  22. 22.
    M Huang, Singh J (2014) Standardization of the hole expanding test. Great Designs in Steel, Autosteel. http://www.autosteel.org. Accessed 08 Jan 2017
  23. 23.
    Wang K, Luo M, Wierzbicki T (2014) Experiments and modeling of edge fracture for an AHSS sheet. Int J Fracture 187:245–268. doi: 10.1007/s10704-014-9937-5 CrossRefGoogle Scholar
  24. 24.
    Chen L, Kim J-K, Kim S-K, Kim G-S, Chin K-G, De Cooman BC (2010) Stretch-flangeability of high Mn TWIP steel. Steel Res Int 81:552–568. doi: 10.1002/srin.201000044 CrossRefGoogle Scholar
  25. 25.
    Taylor MD, Choi KS, Sun X, Matlock DK, Packard CE, Xu L, Barlat F (2014) Correlations between nanoindentation hardness and macroscopic mechanical properties in DP980 steels. Mater Sci Eng A 597:431–439. doi: 10.1016/j.msea.2013.12.084 CrossRefGoogle Scholar
  26. 26.
    Dalloz A, Besson J, Gourgues-Lorenzon AF, Sturel T, Pineau A (2009) Effect of shear cutting on ductility of a dual phase steel. Eng Fract Mech 76:1411–1424. doi: 10.1016/j.engfracmech.2008.10.009 CrossRefGoogle Scholar
  27. 27.
    Wang K, Greve L, Wierzbicki T (2015) FE simulation of edge fracture considering pre-damage from blanking process. Int J Solids Struct 71:206–218. doi: 10.1016/j.ijsolstr.2015.06.023 CrossRefGoogle Scholar
  28. 28.
    Choi H-S, Kim B-M, Ko D-C (2014) Effect of clearance and inclined angle on sheared edge and tool failure in trimming of DP980 sheet. J Mech Sci Technol 28:2319–2328. doi: 10.1007/s12206-014-0522-7 CrossRefGoogle Scholar
  29. 29.
    Nasheralahkami S, Golovashchenko S, Pan K, Brown L, Gugnani B (2016) Characterization of trimmed edge of advanced high strength steel. SAE Technical Paper. doi: 10.4271/2016-01-0358
  30. 30.
    Ilinich AM, Golovashchenko SF, Smith LM (2011) Material anisotropy and trimming method effects on total elongation in DP500 sheet steel. J Mater Process Tech 211:441–449. doi: 10.1016/j.jmatprotec.2010.10.014 CrossRefGoogle Scholar
  31. 31.
    ASTM (2015) Standard test methods for tension testing of metallic materials. ASTM International. http://www.astm.org. Accessed 08 Jan 2017
  32. 32.
    Yoon JI, Kim JG, Jung JM, Lee DJ, Jeong HJ, Shahbaz M, Lee S, Kim HS (2016) Obtaining reliable true plastic stress-strain curves in a wide range of strains using digital image correlation in tensile testing. Korean J Met Mater 54:231–236. doi: 10.3365/KJMM.2016.54.4.231 CrossRefGoogle Scholar
  33. 33.
    Gadelmawla ES, Koura MM, Maksoud TMA, Elewa IM, Soliman HH (2002) Roughness parameters. J Mater Process Tech 123:133–145. doi: 10.1016/S0924-0136(02)00060-2 CrossRefGoogle Scholar
  34. 34.
    Bai Y, Wierzbicki T (2010) Application of extended Mohr–Coulomb criterion to ductile fracture. Int J Fracture 161:1–20. doi: 10.1007/s10704-009-9422-8 CrossRefMATHGoogle Scholar
  35. 35.
    Yoon JI, Jung J, Lee HH, Kim G-S, Kim HS (2016) Factors governing hole expansion ratio of steel sheets with smooth sheared edge. Met Mater Int 22:1009–1014. doi: 10.1007/s12540-016-6346-5 CrossRefGoogle Scholar
  36. 36.
    Paul SK (2014) Non-linear correlation between uniaxial tensile properties and shear-edge hole expansion ratio. J Mater Eng Perform 23:3610–3619. doi: 10.1007/s11665-014-1161-y CrossRefGoogle Scholar
  37. 37.
    Yoon JI, Jung J, Joo S-H, Song TJ, Chin K-G, Seo MH, Kim S-J, Lee S, Kim HS (2016) Correlation between fracture toughness and stretch-flangeability of advanced high strength steels. Mater Lett 180:322–326. doi: 10.1016/j.matlet.2016.05.145 CrossRefGoogle Scholar
  38. 38.
    Chun E-J, Lee J-S, Do H, Kim S-J, Choi Y-S, Park Y-H, Kang N (2012) Effects of coiling temperature and carbides behavior on stretch-flangeability for 980 MPa hot-rolled steels. Korean J Met Mater 50:487–493. doi: 10.3365/KJMM.2012.50.7.487 CrossRefGoogle Scholar
  39. 39.
    Yoon JI, Jung J, Kim JG, Sohn SS, Lee S, Kim HS (2017) Key factors of stretch-flangeability of sheet materials. J Mater Sci. doi: 10.1007/s10853-017-1012-y
  40. 40.
    Kang DH, Kim DW, Kim S, Bae GT, Kim KH, Kim NJ (2009) Relationship between stretch formability and work-hardening capacity of twin-roll cast Mg alloys at room temperature. Scripta Mater 61:768–771. doi: 10.1016/j.scriptamat.2009.06.026 CrossRefGoogle Scholar
  41. 41.
    Narayanasamy R, Ponalagusamy R, Raghuraman S (2008) The effect of strain rate sensitivity on theoretical prediction of limiting draw ratio for cylindrical cup drawing process. Mater Design 29:884–890. doi: 10.1016/j.matdes.2006.05.014 CrossRefGoogle Scholar
  42. 42.
    Zhang C, Leotoing L, Guines D, Ragneau E (2009) Theoretical and numerical study of strain rate influence on AA5083 formability. J Mater Process Tech 209:3849–3858. doi: 10.1016/j.jmatprotec.2008.09.003 CrossRefGoogle Scholar
  43. 43.
    Jin JE, Lee YK (2012) Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel. Acta Mater 60:1680–1688. doi: 10.1016/j.actamat.2011.12.004 CrossRefGoogle Scholar
  44. 44.
    Kim WJ, Lee HW, Yoo SJ, Park YB (2011) Texture and mechanical properties of ultrafine-grained Mg–3Al–1Zn alloy sheets prepared by high-ratio differential speed rolling. Mater Sci Eng A 528:874–879. doi: 10.1016/j.msea.2010.09.007 CrossRefGoogle Scholar
  45. 45.
    Wang YM, Ma E (2004) Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater 52:1699–1709. doi: 10.1016/j.actamat.2003.12.022 CrossRefGoogle Scholar
  46. 46.
    Dieter GE, Bacon D (1988) Mechanical metallurgy. McGraw-Hill, New YorkGoogle Scholar
  47. 47.
    Matsuno T, Nitta J, Sato K, Mizumura M, Suehiro M (2015) Effect of shearing clearance and angle on stretch-flange formability evaluated by saddle-type forming test. J Mater Process Tech 223:98–104. doi: 10.1016/j.jmatprotec.2015.03.041 CrossRefGoogle Scholar
  48. 48.
    K-i M, Abe Y, Suzui Y (2010) Improvement of stretch flangeability of ultra high strength steel sheet by smoothing of sheared edge. J Mater Process Tech 210:653–659. doi: 10.1016/j.jmatprotec.2009.11.014 CrossRefGoogle Scholar
  49. 49.
    Ruggles T, Cluff S, Miles M, Fullwood D, Daniels C, Avila A, Chen M (2016) Ductility of advanced high-strength steel in the presence of a sheared edge. JOM US 68:1839–1849. doi: 10.1007/s11837-016-1927-9 CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2017

Authors and Affiliations

  • J. I. Yoon
    • 1
  • J. Jung
    • 1
  • J. H. Ryu
    • 2
  • K. Lee
    • 2
  • H. S. Kim
    • 1
    • 3
  1. 1.Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
  2. 2.Technical Research LaboratoriesPOSCOGwangyangRepublic of Korea
  3. 3.Center for High Entropy AlloysPohang University of Science and Technology (POSTECH)PohangRepublic of Korea

Personalised recommendations