Advertisement

Experimental Mechanics

, Volume 57, Issue 8, pp 1161–1181 | Cite as

A Review of Speckle Pattern Fabrication and Assessment for Digital Image Correlation

  • Y.L. Dong
  • B. Pan
Article

Abstract

As a carrier of deformation information, the speckle pattern, or more exactly the random intensity distributions, which could be naturally occurred or artificially fabricated onto test samples’ surface, plays an indispensable role in digital image correlation (DIC). It is now well recognized that the accuracy and precision in DIC measurements not only rely on correlation algorithms, but also depend highly on the quality of the speckle pattern. Considering the huge diversity in test materials, spatial scales and experimental conditions, speckle pattern fabrication could be a challenging issue facing DIC practitioners. To obtain good speckle patterns suitable for DIC measurements, some key issues of fabrication methods and quality assessment of speckle patterns must be well addressed. To this end, this review systematically presents the speckle pattern classification and fabrication techniques for various samples and scales, as well as some typical quality assessment metrics.

Keywords

Digital image correlation Speckle pattern Micro/Nano-scale Deformation measurement 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (NSFC) (Grant nos. 11272032, 11322220, 11427802, 11602011 and 11632010), and the Aeronautical Science Foundation of China (2016ZD51034), and Beijing Nova Program (xx2014B034).

References

  1. 1.
    Peters WH, Ranson WF (1981) Digital imaging techniques in experimental stress analysis. Opt Eng 21:427–431Google Scholar
  2. 2.
    Chu TC, Ranson WF, Sutton MA (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25(3):232–244CrossRefGoogle Scholar
  3. 3.
    Sutton MA, Mingqi C, Peters WH, Chao YJ, McNeill SR (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4(3):143–150CrossRefGoogle Scholar
  4. 4.
    Peters WH, Ranson WF, Sutton MA, Chu TC, Anderson J (1983) Application of digital correlation methods to rigid body mechanics. Opt Eng 22(6):738–742CrossRefGoogle Scholar
  5. 5.
    Sutton MA, Orteu J, Schreier HW (2009) Image correlation for shape, motion and deformation measurements. Springer, USGoogle Scholar
  6. 6.
    Pan B, Qian K, Xie HM, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Tech 20(6):062001CrossRefGoogle Scholar
  7. 7.
    Pan B (2011) Recent progress in digital image correlation. Exp Mech 51(7):1223–1235CrossRefGoogle Scholar
  8. 8.
    Zhou P, Goodson KE (2001) Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC). Opt Eng 40(8):1613–1620CrossRefGoogle Scholar
  9. 9.
    Lecompte D, Smits A, Bossuyt S, Sol H, Vantomme J, Van Hemelrijck D, Habraken AM (2006) Quality assessment of speckle patterns for digital image correlation. Opt Lasers Eng 44(11):1132–1145CrossRefGoogle Scholar
  10. 10.
    Sun YF, Pang HJ (2007) Study of optimal subset size in digital image correlation of speckle pattern images. Opt Lasers Eng 45:967–974CrossRefGoogle Scholar
  11. 11.
    Pan B, Xie HM, Wang ZY, Qian KM, Wang ZY (2008) Study on subset size selection in digital image correlation for speckle patterns. Opt Exp 16(10):7037–7048CrossRefGoogle Scholar
  12. 12.
    Wang YQ, Sutton MA, Bruch HA, Schreier HW (2009) Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement. Strain 45:160–178CrossRefGoogle Scholar
  13. 13.
    Pan B, Lu ZX, Xie HM (2010) Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation. Opt Lasers Eng 48(4):469–477CrossRefGoogle Scholar
  14. 14.
    Hua T, Xie H, Wang S, Hu Z, Chen P, Zhang Q (2011) Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation. Opt Laser Technol 43(1):9–13CrossRefGoogle Scholar
  15. 15.
    Stoilov G, Kavardzhikov V, Pashkouleva D (2012) A comparative study of random patterns for digital image correlation. J Theo Appl Mech 42(2):55–66Google Scholar
  16. 16.
    Crammond G, Boyd SW, Dulieu-Barton JM (2013) Speckle pattern quality assessment for digital image correlation. Opt Lasers Eng 51(12):1368–1374CrossRefGoogle Scholar
  17. 17.
    Bossuyt S (2013) Optimized patterns for digital image correlation. In: Imaging methods for novel materials and challenging applications, vol 3. Springer, New York, pp 239–248CrossRefGoogle Scholar
  18. 18.
    Liu XY, Li RL, Zhao HW, Cheng TH, Cui GJ, Tan QC, Meng GW (2015) Quality assessment of speckle patterns for digital image correlation by Shannon entropy. Opt Int J Light Electron Opt 126(23):4206–4211CrossRefGoogle Scholar
  19. 19.
    Mazzoleni P, Zappa E, Matta F, Sutton MA (2015) Thermo-mechanical toner transfer for high-quality digital image correlation speckle patterns. Opt Lasers Eng 75:72–80CrossRefGoogle Scholar
  20. 20.
    Neggers J, Blaysat B, Hoefnagels JPM, Geers MGD (2016) On image gradients in digital image correlation. Int J Num Meth Eng 105(4):243–260MathSciNetCrossRefGoogle Scholar
  21. 21.
    Bomarito GF, Hochhalter JD, Ruggles TJ, Cannon AH (2017) Increasing accuracy and precision of digital image correlation through pattern optimization. Opt Lasers Eng 91:73–75CrossRefGoogle Scholar
  22. 22.
    Luo PF, Chao YJ, Sutton MA, Peters WH (1993) Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Exp Mech 33(2):123–132CrossRefGoogle Scholar
  23. 23.
    Helm JD, McNeill SR, Sutton MA (1996) Improved three-dimensional image correlation for surface displacement measurement. Opt Eng 35(7):1911–1920CrossRefGoogle Scholar
  24. 24.
    Pan B, Wu DF, Yu LP (2012) Optimization of a three-dimensional digital image correlation system for deformation measurement in extreme environments. App Opt 51(19):4409–4419CrossRefGoogle Scholar
  25. 25.
    Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39(3):217–226CrossRefGoogle Scholar
  26. 26.
    Pan B, Wu DF, Wang ZY (2012) Internal displacement and strain measurement using digital volume correlation: a least squares framework. Meas Sci Tech 23:045002CrossRefGoogle Scholar
  27. 27.
    Li XD, Xu WJ, Sutton MA, Mello M (2007) In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques. Nanotechnology 16(1):4–13Google Scholar
  28. 28.
    Sachs C, Fabritius H, Raabe D (2006) Experimental investigation of the elastic–plastic deformation of mineralized lobster cuticle by digital image correlation. J Struct Bio 155(3):409–425CrossRefGoogle Scholar
  29. 29.
    Sutton MA, Ke X, Lessner SM, Goldbach M, Yost M, Zhao F, Schreier HW (2008) Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation. J Bio Mater Res A 84(1):178–190CrossRefGoogle Scholar
  30. 30.
    Ouglova A, Berthaud Y, Foct F, François M, Ragueneau F, Petre-Lazar I (2008) The influence of corrosion on bond properties between concrete and reinforcement in concrete structures. Mater Struct 41(5):969–980CrossRefGoogle Scholar
  31. 31.
    Pan B, Xie HM, Hua T, Asundi A (2009) Measurement of coefficient of thermal expansion of films using digital image correlation method. Polym Test 28(1):75–83CrossRefGoogle Scholar
  32. 32.
    Schreier HW, Garcia D, Sutton MA (2004) Advances in light microscope stereo vision. Exp Mech 44(3):278–288CrossRefGoogle Scholar
  33. 33.
    Guo SM, Sutton MA, Majumdar P, Reifsnider KM, Yu L, Gresil M (2014) Development and application of an experimental system for the study of thin composites undergoing large deformations in combined bending–compression loading. J Comp Mater 48(8):997–1023CrossRefGoogle Scholar
  34. 34.
    Murasawa G, Yoneyama S, Sakuma T (2007) Nucleation, bifurcation and propagation of local deformation arising in NiTi shape memory alloy. Smart Mater Struct 16(1):160–167CrossRefGoogle Scholar
  35. 35.
    Grant BMB, Stone HJ, Withers PJ, Preuss M (2009) High temperature strain field measurement using digital image correlation. J Strain Anal Eng Des 44:263–271CrossRefGoogle Scholar
  36. 36.
    Pan B, Wu D, Xia Y (2010) High-temperature deformation field measurement by combining transient aerodynamic heating simulation system and reliability-guided digital image correlation. Opt Lasers Eng 48:841–848CrossRefGoogle Scholar
  37. 37.
    Dong Y, Hideki K, Yutaka K (2014) Optical system for microscopic observation and strain measurement at high temperature. Meas Sci Technol 25(2):025002CrossRefGoogle Scholar
  38. 38.
    Banks J, Giovannetti LM, Soubeyran X, Wright AM, Turnock SR, Boyd SW (2015) Assessment of digital image correlation as a method of obtaining deformations of a structure under fluid load. J Fluid Struct 58:173–187CrossRefGoogle Scholar
  39. 39.
    Pan B, Yu LP, Wu DF (2015) Thermo-mechanical response of superalloy honeycomb sandwich panels subjected to non-steady thermal loading. Mater Des 88:528–536CrossRefGoogle Scholar
  40. 40.
    Reu P (2014) All about speckles: speckle size measurement. Exp Tech 38(6):1–2CrossRefGoogle Scholar
  41. 41.
    Reu P (2015) All about speckles: speckle density. Exp Tech 39(3):1–2CrossRefGoogle Scholar
  42. 42.
    Reu P (2015) All about speckles: contrast. Exp Tech 39(1):1–2CrossRefGoogle Scholar
  43. 43.
    Reu P (2014) All about speckles: aliasing. Exp Tech 38(5):1–3CrossRefGoogle Scholar
  44. 44.
    Reu P (2015) All about speckles: edge sharpness. Exp Tech 39(2):1–2CrossRefGoogle Scholar
  45. 45.
    Bruck HA, Mcneill SR, Sutton MA, Peters WH (1989) Digital image correlation using Newton–Raphson method of partial differential correction. Exp Mech 29:261–267CrossRefGoogle Scholar
  46. 46.
    Pan B, Xie HM, Xu BQ, Dai FL (2006) Performance of sub-pixel registration algorithms in digital image correlation. Meas Sci Tech 17(6):1615–1621CrossRefGoogle Scholar
  47. 47.
    Pan B, Li K (2011) A fast digital image correlation method for deformation measurement. Opt Lasers Eng 49(7):841–847CrossRefGoogle Scholar
  48. 48.
    Pan B, Li K, Tong W (2013) Fast, robust and accurate digital image correlation calculation without redundant computations. Exp Mech 53(7):1277–1289CrossRefGoogle Scholar
  49. 49.
    Pan B, Tian L, Song X (2016) Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation. NDT & E Int 79:73–80CrossRefGoogle Scholar
  50. 50.
    Pan B, Wang B (2016) Digital image correlation with enhanced accuracy and efficiency: a comparison of two subpixel registration algorithms. Exp Mech 56(8):1395–1409CrossRefGoogle Scholar
  51. 51.
    Pan B (2014) An evaluation of convergence criteria for digital image correlation using inverse compositional gauss–Newton algorithm. Strain 50(1):48–56CrossRefGoogle Scholar
  52. 52.
    Sánchez-Arévalo FM, Pulos G (2008) Use of digital image correlation to determine the mechanical behavior of materials. Mater Charact 59(11):1572–1579CrossRefGoogle Scholar
  53. 53.
    Gauvin C, Jullien D, Doumalin P, Dupré JC, Gril J (2014) Image correlation to evaluate the influence of hygrothermal loading on wood. Strain 50(5):428–435CrossRefGoogle Scholar
  54. 54.
    Bourcier M, Bornert M, Dimanov A, Héripré E, Raphanel JL (2013) Multiscale experimental investigation of crystal plasticity and grain boundary sliding in synthetic halite using digital image correlation. J Geophy Res: Solid Earth 118(2):511–526CrossRefGoogle Scholar
  55. 55.
    Hall SA, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani G, Bésuelle P (2010) Discrete and continuum analysis of localized deformation in sand using X-ray μCT and volumetric digital image correlation. Geotechnique 60(5):315–322CrossRefGoogle Scholar
  56. 56.
    Wang Y, Cuitiño AM (2002) Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation. Int J of Sol and Struc 39(13):3777–3796CrossRefGoogle Scholar
  57. 57.
    Rae PJ, Palmer SJP, Goldrein HT, Lewis AL, Field JE (2004) White-light digital image cross-correlation (DICC) analysis of the deformation of composite materials with random microstructure. Opt Lasers Eng 41(4):635–648CrossRefGoogle Scholar
  58. 58.
    Jin H, Bruck HA (2005) A new method for characterizing nonlinearity in scanning probe microscopes using digital image correlation. Nanotechnology 16(9):1849–1855CrossRefGoogle Scholar
  59. 59.
    Srinivasan V, Radhakrishnan S, Zhang X, Subbarayan G, Baughn T, Nguyen L (2005) High resolution characterization of materials used in packages through digital image correlation. ASME pacific rim technical conference and exhibition on integration and packaging of MEMS, NEMS, and electronic systems collocated with the ASME 2005 heat transfer summer conference pp1471–1478Google Scholar
  60. 60.
    Zhang D, Luo M, Arola DD (2006) Displacement/strain measurements using an optical microscope and digital image correlation. Opt Eng 45(3): 033605-033605-9Google Scholar
  61. 61.
    Jin H, Lu WY, Korellis J (2008) Micro-scale deformation measurement using the digital image correlation technique and scanning electron microscope imaging. J Strain Anal Eng 43(8):719–728CrossRefGoogle Scholar
  62. 62.
    Sjögren T, Persson PE, Vomacka P (2011) Analysing the deformation behaviour of compacted graphite cast irons using digital image correlation techniques. Key Eng Mater Trans Tech Publications 457:470–475CrossRefGoogle Scholar
  63. 63.
    Ghadbeigi H, Pinna C, Celotto S (2012) Quantitative strain analysis of the large deformation at the scale of microstructure: comparison between digital image correlation and microgrid techniques. Exp Mech 52(9):1483–1492CrossRefGoogle Scholar
  64. 64.
    Dusserre G, Nazaret F, Robert L, Cutard T (2013) Applicability of image correlation techniques to characterise asymmetric refractory creep during bending tests. J Eur Ceram Soc 33(2):221–231CrossRefGoogle Scholar
  65. 65.
    Su YQ, Yao XF, Wang S, Ma YJ (2015) Improvement on measurement accuracy of high-temperature DIC by grayscale-average technique. Opt Lasers Eng 75:10–16CrossRefGoogle Scholar
  66. 66.
    Xiong H, Li S, Xiao T (2015) A scheme of deformation measurement for cancellous bones based on the digital image correlation method. 8th international conference on biomedical engineering and informatics (BMEI) IEEE pp 391-396Google Scholar
  67. 67.
    Zhang X, Wang Y, Yang J, Qiao Z, Ren C, Chen C (2016) Deformation analysis of ferrite/pearlite banded structure under uniaxial tension using digital image correlation. Opt Lasers Eng 85:24–28CrossRefGoogle Scholar
  68. 68.
    Turner JL, Russell SS (1990) Application of digital image analysis to strain measurement at elevated temperature. Strain 26(2):55–59CrossRefGoogle Scholar
  69. 69.
    Meyer P, Waas AM (2015) Measurement of in situ-full-field strain maps on ceramic matrix composites at elevated temperature using digital image correlation. Exp Mech 55(5):795–802CrossRefGoogle Scholar
  70. 70.
    Brillaud J, Lagattu F (2002) Limits and possibilities of laser speckle and white-light image-correlation methods: theory and experiments. Appl Opt 4:6603–6613CrossRefGoogle Scholar
  71. 71.
    Lyons JS, Liu J, Sutton MA (1996) High-temperature deformation measurements using digital-image correlation. Exp Mech 36(1):64–70CrossRefGoogle Scholar
  72. 72.
    Walley JL, Wheeler R, Uchic MD, Mills MJ (2012) In-situ mechanical testing for characterizing strain localization during deformation at elevated temperatures. Exp Mech 52(4):405–416CrossRefGoogle Scholar
  73. 73.
    Kammers AD, Daly S (2011) Small-scale patterning methods for digital image correlation under scanning electron microscopy. Meas Sci Technol 22(12):125501CrossRefGoogle Scholar
  74. 74.
    Sutton MA, Li N, Joy DC, Reynolds AP, Li X (2007) Scanning electron microscopy for quantitative small and large deformation measurements part I: SEM imaging at magnifications from 200 to 10,000. Exp Mech 47(6):775–787CrossRefGoogle Scholar
  75. 75.
    Jonnalagadda KN, Chasiotis I, Yagnamurthy S, Lambros J, Pulskamp J, Polcawich R, Dubey M (2010) Experimental investigation of strain rate dependence of nanocrystalline Pt films. Exp Mech 50(1):25–35CrossRefGoogle Scholar
  76. 76.
    Winiarski B, Schajer GS, Withers PJ (2012) Surface decoration for improving the accuracy of displacement measurements by digital image correlation in SEM. Exp Mech 52(7):793–804CrossRefGoogle Scholar
  77. 77.
    Dong Y, Kakisawa H, Kagawa Y (2015) Development of microscale pattern for digital image correlation up to 1400 °C. Opt Lasers Eng 68:7–15CrossRefGoogle Scholar
  78. 78.
    Stinville JC, Echlin MP, Texier D, Bridier F, Bocher P, Pollock TM (2016) Sub-grain scale digital image correlation by electron microscopy for polycrystalline materials during elastic and plastic deformation. Exp Mech 56(2):197–216CrossRefGoogle Scholar
  79. 79.
    Lionello G, Cristofolini L (2014) A practical approach to optimizing the preparation of speckle patterns for digital-image correlation. Meas Sci Tech 25(10):107001CrossRefGoogle Scholar
  80. 80.
    Abdellah A, Baierl D, Fabel B, Lugli P, Scarpa G (2009) Spray-coating deposition for large area organic thin-film devices. NSTI-Nanotech 2:447–445Google Scholar
  81. 81.
    Rayan MK (2008) Spray deposition of biomolecular thin films. Dissertation, University of South FloridaGoogle Scholar
  82. 82.
    Liu J, Sutton M, Lyons J, Deng X (1998) Experimental investigation of near crack tip creep deformation in alloy 800 at 650 °C. Int J Frac 91(3):233–268CrossRefGoogle Scholar
  83. 83.
    Pan B, Wu DF, Wang ZY, Xia Y (2011) High-temperature digital image correlation for full-field deformation measurement at 1200 °C. Meas Sci Technol 22(1):015701CrossRefGoogle Scholar
  84. 84.
    Novak MD, Zok FW (2011) High-temperature materials testing with full-field strain measurement: experimental design and practice. Rev Sci Instrum 82:115101CrossRefGoogle Scholar
  85. 85.
    Pan B, Wu D, Gao J (2013) High-temperature strain measurement using active imaging digital image correlation and infrared radiation heating. J Strain Anal Eng Des 0309324713502201Google Scholar
  86. 86.
    Lyons J, Sutton M, Reynolds A (1998) Experimental characterization of crack tip deformation fields in alloy 718 at high temperatures. J Eng Mater Tech 120(1):71–78CrossRefGoogle Scholar
  87. 87.
    Sharma SK, Ko GD, Kang KJ (2009) High temperature creep and tensile properties of alumina formed on ferroalloy foils doped with yttrium. J Eur Ceram Soc 29(3):355–362CrossRefGoogle Scholar
  88. 88.
    De Strycker M, Schueremans L, Van Paepegem W, Debruyne D (2010) Measuring the thermal expansion coefficient of tubular steel specimens with digital image correlation techniques. Opt Lasers Eng 48(10):978–986CrossRefGoogle Scholar
  89. 89.
    Leplay P, Réthoré J, Meille S, Baietto MC (2012) Identification of asymmetric constitutive laws at high temperature based on digital image correlation. J Eur Ceram Soc 32(15):3949–3958MATHCrossRefGoogle Scholar
  90. 90.
    Pan B, Jiang T, Wu D (2014) Strain measurement of objects subjected to aerodynamic heating using digital image correlation: experimental design and preliminary results. Rev Sci Instr 85(11):115102CrossRefGoogle Scholar
  91. 91.
    Hammer JT, Seidt JD, Gilat A (2014) Strain measurement at temperatures up to 800 oC utilizing digital image correlation. Adv of Opt Methods Exp Mech 3:167–170Google Scholar
  92. 92.
    Berke RB, Lambros J (2014) Ultraviolet digital image correlation (UV-DIC) for high temperature applications. Rev Sci Instr 85(4):045121CrossRefGoogle Scholar
  93. 93.
    Appleby MP, Zhu D, Morscher GN (2015) Mechanical properties and real-time damage evaluations of environmental barrier coated SiC/SiC CMCs subjected to tensile loading under thermal gradients. Sur Coat Technol 284:318–326CrossRefGoogle Scholar
  94. 94.
    Leplay P, Lafforgue O, Hild F (2015) Nalysis of asymmetrical creep of a ceramic at 1350 oC by digital image correlation. J Ame Cera Soc 98(7):2240–2247CrossRefGoogle Scholar
  95. 95.
    Chen L, Wang Y, Dan X, Xiao Y, Yang L (2016) Experimental research of digital image correlation system in high temperature test. Seventh international symposium on precision mechanical measurements. Intern Soc opt photo, 990306-990306-8Google Scholar
  96. 96.
    Berfield TA, Patel JK, Shimmin RG, Braun PV, Lambros J, Sottos NR (2007) Micro-and nanoscale deformation measurement of surface and internal planes via digital image correlation. Exp Mech 47(1):51–62CrossRefGoogle Scholar
  97. 97.
    Niendorf T, Burs C, Canadinc D, Maier HJ (2009) Early detection of crack initiation sites in TiAl alloys during low-cycle fatigue at high temperatures utilizing digital image correlation. Int J Mater Res 100(4):603–608CrossRefGoogle Scholar
  98. 98.
    Thompson MS, Schell H, Lienau J, Duda GN (2007) Digital image correlation: a technique for determining local mechanical conditions within early bone callus. Med Eng Phys 29(7):820–823CrossRefGoogle Scholar
  99. 99.
    Zhang D, Arola DD (2004) Applications of digital image correlation to biological tissues. J Biomed Opt 9(4):691–699CrossRefGoogle Scholar
  100. 100.
    Lauret C, Hrapko M, Van Dommelen JAW et al (2009) Optical characterization of acceleration-induced strain fields in inhomogeneous brain slices. Med Eng Phy 31(3):392–399CrossRefGoogle Scholar
  101. 101.
    Kelleher JE, Zhang K, Siegmund T, Chan RW (2010) Spatially varying properties of the vocal ligament contribute to its eigen frequency response. J Mech Behav Biomed Mater 3:600–609CrossRefGoogle Scholar
  102. 102.
    Myers KM, Coudrillier B, Boyce BL, Nguyen TD (2010) The inflation response of the posterior bovine sclera. Acta Biomater 6:4327–4335CrossRefGoogle Scholar
  103. 103.
    Ahn B, Kim J (2010) Measurement and characterization of so tissue behavior with surface deformation and force response under large deformations. Med Image Anal 14:138–148CrossRefGoogle Scholar
  104. 104.
    Yamaguchi H, Kikugawa H, Asaka T, Kasuya H, Kuninori M (2011) Measurement of cortical bone strain distribution by image correlation techniques and from fracture toughness. Mater Trans 52:1026–1032CrossRefGoogle Scholar
  105. 105.
    Brunon A, Bruyère-Garnier K, Coret M (2011) Characterization of the nonlinear behaviour and the failure of human liver capsule through inflation tests. J Mech Behav Biomed Mater 4:1572–1581CrossRefGoogle Scholar
  106. 106.
    Tiossi R, Lin L, Rodrigues RC, Heo YC, Conrad HJ, de Mattos MG, Ribeiro RF, Fok AS (2011) Digital image correlation analysis of the load transfer by implant-supported restorations. J Biomech 44:1008–1013CrossRefGoogle Scholar
  107. 107.
    Libertiaux V, Pascon F, Cescotto S (2011) Experimental verification of brain tissue incompressibility using digital image correlation. J Mech Behav Biomed Mate 4(7):1177–1185CrossRefGoogle Scholar
  108. 108.
    Soons J, Lava P, Debruyne D, Dirckx J (2012) Full-field optical deformation measurement in biomechanics: digital speckle pattern interferometry and 3D digital image correlation applied to bird beaks. J Mech Behav Biomed Mater 14:186–191CrossRefGoogle Scholar
  109. 109.
    Ottenio M, Tran D, Annaidh AN, Gilchrist MD, Bruyère K (2015) Strain rate and anisotropy effects on the tensile failure characteristics of human skin. J Mech Behav Biomed Mater 41:241–250CrossRefGoogle Scholar
  110. 110.
    Palanca M, Brugo TM, Cristofolini L (2015) Use of digital image correlation to investigate the biomechanics of the vertebra. J Mech Med Bio 15(02):1540004CrossRefGoogle Scholar
  111. 111.
    Zhou B, Ravindran S, Ferdous J, Kidane A, Sutton MA, Shazly T (2016) Using digital image correlation to characterize local strains on vascular tissue specimens. J Vis Exp 107:e53625. doi: 10.3791/53625 Google Scholar
  112. 112.
    Hu Z, Luo H, Du Y, Lu H (2013) Fluorescent stereo microscopy for 3D surface profilometry and deformation mapping. Opt Exp 21(10):11808–11818CrossRefGoogle Scholar
  113. 113.
    LePage WS, Daly SH, Shaw JA (2016) Cross polarization for improved digital image correlation. Exp Mech 56(6):969–985CrossRefGoogle Scholar
  114. 114.
    Emsile AG, Bonner FT, Peek LG (1958) Flow of a viscous liquid on a rotating disk. J Appl Phys 29:858–862MathSciNetCrossRefGoogle Scholar
  115. 115.
    Sahu N, Parija B, Panigrahi S (2009) Fundamental understanding and modeling of spin coating process: a review. Indian J Phy 83(4):493–502CrossRefGoogle Scholar
  116. 116.
    Tyona MD (2013) A theoretical study on spin coating technique. Adv Mater Res 2(4):195–208CrossRefGoogle Scholar
  117. 117.
    Wang H, Xie H, Li Y, Zhu J (2012) Fabrication of micro-scale speckle pattern and its applications for deformation measurement. Meas Sci Technol 23(3):035402CrossRefGoogle Scholar
  118. 118.
    Berfield TA, Patel JK, Shimmin RG, Braun PV, Lambros J, Sottos NR (2006) Fluorescent image correlation for nanoscale deformation measurements. Small 2(5):631–635CrossRefGoogle Scholar
  119. 119.
    Berfield TA, Carroll JF III, Payne DA et al (2009) Thermal strain measurement in sol-gel lead zirconate titanate thin films. J Appl Phy 106(12):123501CrossRefGoogle Scholar
  120. 120.
    Hamilton AR, White SR, Sottos NR (2007) Characterization of microvascular networks for self-healing using fluorescent digital image correlation. Proceedings of the first international conference on self healing materials 18-20 April, Noordwijk aan zee, The NetherlandsGoogle Scholar
  121. 121.
    Wilhelmsen AN ( 2015) Characterization of local strain fields in cross-ply composites under transverse loading. Dissertation, University of Illinois, Urbana-ChampaignGoogle Scholar
  122. 122.
    Carroll J, Abuzaid W, Lambros J, Sehitoglu H (2010) An experimental methodology to relate local strain to microstructural texture. Rev Sci Instru 81(8):083703CrossRefGoogle Scholar
  123. 123.
    Karanjgaokar NJ, Oh CS, Chasiotis I (2011) Microscale experiments at elevated temperatures evaluated with digital image correlation. Exp Mech 51(4):609–618CrossRefGoogle Scholar
  124. 124.
    Padilla HA, Lambros J, Beaudoin AJ, Robertson IM (2012) Relating inhomogeneous deformation to local texture in zirconium through grain-scale digital image correlation strain mapping experiments. International Journal of Solids and Structures In J Solids Struct 49(1):18–31CrossRefGoogle Scholar
  125. 125.
    Casperson MC, Carroll JD, Lambros J, Sehitoglu H, Dodds RH (2014) Investigation of thermal effects on fatigue crack closure using multiscale digital image correlation experiments. Int J Fatigue 61:10–20CrossRefGoogle Scholar
  126. 126.
    Pataky GJ, Sehitoglu H (2015) Experimental methodology for studying strain heterogeneity with microstructural data from high temperature deformation. Exp Mech 55(1):53–63CrossRefGoogle Scholar
  127. 127.
    Luo Y, Ruff J, Ray R, Gu Y, Ploehn HJ, Scrivens WA (2005) Vapor-assisted remodeling of thin gold films. Chem Mater 17(20):5014–5023CrossRefGoogle Scholar
  128. 128.
    Scrivens WA, Luo Y, Sutton MA et al (2007) Development of patterns for digital image correlation measurements at reduced length scales. Exp Mech 47(1):63–77CrossRefGoogle Scholar
  129. 129.
    Li N, Sutton MA, Li X, Schreier HW (2008) Full-field thermal deformation measurements in a scanning electron microscope by 2D digital image correlation. Exp Mech 48(5):635–646CrossRefGoogle Scholar
  130. 130.
    Di Gioacchino F, da Fonseca JQ (2013) Plastic strain mapping with sub-micron resolution using digital image correlation. Exp Mech 53(5):743–754CrossRefGoogle Scholar
  131. 131.
    McCord MA, Rooks MJ (1997) Electron beam lithography. Handbook of Microlithography, Micromachining, and Microfabrication 1:139–249Google Scholar
  132. 132.
    Seal S (Ed.) (2010) Functional nanostructures: processing, characterization, and applications. Springer Science & Business MediaGoogle Scholar
  133. 133.
    Sutton MA, Zhao W, McNeill SR, Helm JD, Piascik RS, Riddell WT (1999) local crack closure measurements: development of a measurement system using computer vision and a far-field microscope. In advances in fatigue crack closure measurement and analysis, vol 2, ASTM InternationalGoogle Scholar
  134. 134.
    Zhang Y, Topping TD, Lavernia EJ, Nutt SR (2014) Dynamic micro-strain analysis of ultrafine-grained aluminum magnesium alloy using digital image correlation. Metall Mater Trans A 45(1):47–54CrossRefGoogle Scholar
  135. 135.
    Latourte F, Salez T, Guery A, Rupin N, Mahe M (2014) Deformation studies from in situ SEM experiments of a reactor pressure vessel steel at room and low temperatures. J Nuc Mater 454(1):373–380CrossRefGoogle Scholar
  136. 136.
    Allais L, Bornert M, Bretheau T, Caldemaison D (1994) Experimental characterization of the local strain field in a heterogeneous elastoplastic material. Acta Metall et Mater 42(11):3865–3880CrossRefGoogle Scholar
  137. 137.
    Guery A, Latourte F, Hild F, Roux S (2013) Characterization of SEM speckle pattern marking and imaging distortion by digital image correlation. Meas Sci Tech 25(1):015401CrossRefGoogle Scholar
  138. 138.
    Li N, Guo S, Sutton MA (2011) Recent progress in e-beam lithography for SEM patterning. In MEMS and Nanotechnology, 2, Springer, New York, pp 163–166Google Scholar
  139. 139.
    Tanaka Y, Naito K, Kishimoto S, Kagawa Y (2011) Development of a pattern to measure multiscale deformation and strain distribution via in situ FE-SEM observations. Nanotechnology 22(11):115704CrossRefGoogle Scholar
  140. 140.
    Carter JLW, Uchic MD, Mills MJ (2015) Impact of speckle pattern parameters on DIC strain resolution calculated from in-situ SEM experiments. In fracture, fatigue, failure, and damage evolution, 5, Springer, pp 119-126Google Scholar
  141. 141.
    Melngailis J (1987) Focused ion beam technology and applications. J Vac Sci Technol B 5(2):469–495CrossRefGoogle Scholar
  142. 142.
    Liu Z, Xie H, Fang D et al (2007) Deformation analysis in microstructures and micro-devices. Microelec Reliab 47(12):2226–2230CrossRefGoogle Scholar
  143. 143.
    Korsunsky A, Sebastiani M, Bemporad E (2009) Focused ion beam ring drilling for residual stress evaluation. Mater Lett 63:1961–1963CrossRefGoogle Scholar
  144. 144.
    Sebastiani M, Eberl C, Bemporad E, Pharr GM (2011) Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method. Mater Sci Eng A 528(27):7901–7908CrossRefGoogle Scholar
  145. 145.
    Li Y, Xie HM, Wang QH, Liu ZW (2013) Fabrication technique of deformation carriers (gratings and speckle patterns) with FIB for microscale/nanoscale deformation measurement. FIB Nanostructures, Springer, pp 267–298Google Scholar
  146. 146.
    Sabate N, Vogel D, Gollhardt A, Marcos J, Gracia I, Cane C, Michel B (2006) Digital image correlation of nanoscale deformation fields for local stress measurement in thin films. Nanotechnology 17:5264–5270CrossRefGoogle Scholar
  147. 147.
    Winiarski B, Withers PJ (2012) Micron-scale residual stress measurement by micro-hole drilling and digital image correlation. Exp Mech 52(4):417–428CrossRefGoogle Scholar
  148. 148.
    Zhu R, Xie H, Xue Y, Wang L, Li Y (2015) Fabrication of speckle patterns by focused ion beam deposition and its application to micro-scale residual stress measurement. Meas Sci Technol 26(9):095601CrossRefGoogle Scholar
  149. 149.
    Thompson RJ, Hemker KJ (2007) Thermal expansion measurements on coating materials by digital image correlation. Proceedings of the 2007 SEM annual conference and exposition on exposition on experimental and applied mechanics. Springfield, MassachusettsGoogle Scholar
  150. 150.
    Blaber J, Adair BS, Antoniou A (2015) A methodology for high resolution digital image correlation in high temperature experiments. Rev Sci Instru 86(3):035111CrossRefGoogle Scholar
  151. 151.
    Biery NE, De Graef M, Pollock TM (2001) Influence of microstructure and strain distribution on failure properties in intermetallic TiAl-based alloys. Mater Sci Eng A, 319-321: 613–617Google Scholar
  152. 152.
    Biery N, De Graef M, Pollock TM (2003) A method for measuring microstructural-scale strains using a scanning electron microscope: applications to γ-titanium aluminides. Metall Mater Trans A 34(10):2301–2313CrossRefGoogle Scholar
  153. 153.
    Zink AG, Davidson RW, Hanna RB (2007) Strain measurement in wood using a digital image correlation technique. Wood Fiber Sci 27(4):346–359Google Scholar
  154. 154.
    Helm JD (2008) Digital image correlation for specimens with multiple growing cracks. Exp Mech 48(6):753–762CrossRefGoogle Scholar
  155. 155.
    Ma J, Goble K, Smietana M, Kostrominova T, Larkin L, Arruda EM (2009) Morphological and functional characteristics of three-dimensional engineered bone-ligament-bone constructs following implantation. J Biomech Eng 131(10):101017CrossRefGoogle Scholar
  156. 156.
    Avitabile P, Niezrecki C, Helfrick M, Warren C, Pingle P (2010) Noncontact measurement techniques for model correlation. TEST 44(2):8–12Google Scholar
  157. 157.
    Jerabek M, Major Z, Lang RW (2010) Strain determination of polymeric materials using digital image correlation. Polym Test 29(3):407–416CrossRefGoogle Scholar
  158. 158.
    Hisley DM, Gurganus JC, Drysdale AW (2011) Experimental methodology using digital image correlation to assess ballistic helmet blunt trauma. J Appl Mech 78(5):051022CrossRefGoogle Scholar
  159. 159.
    Castelluccio GM, Yawny AA, Perez Ipina JE et al (2012) In situ evaluation of tensile properties of heat-affected zones from welded steel pipes. Strain 48(1):68–74CrossRefGoogle Scholar
  160. 160.
    Kammers AD, Daly S (2013) Self-assembled nanoparticle surface patterning for improved digital image correlation in a scanning electron microscope. Exp Mech 53(8):1333–1341CrossRefGoogle Scholar
  161. 161.
    Deneweth JM, Newman KE, Sylvia SM, McLean SG, Arruda EM (2013) Heterogeneity of tibial plateau cartilage in response to a physiological compressive strain rate. J Orthop Res 31(3):370–375CrossRefGoogle Scholar
  162. 162.
    Mahalingam VD, Behbahani-Nejad N, Horine VS, Olsen TJ, Smietana MJ, Wojtys EM, Wellik DM, Arruda EM, Larkin LM (2015) Allogeneic versus autologous derived cell sources for use in engineered bone-ligament-bone grafts in sheep anterior cruciate ligament repair. Tissue Eng A 21(5–6):1047–1054CrossRefGoogle Scholar
  163. 163.
    Bong WJ, Daly S, Shorter KA. Full field in vivo characterization of skin deformation under pressure loadingGoogle Scholar
  164. 164.
    Williams GM, Gratz KR, Sah RL (2009) Asymmetrical strain distributions and neutral axis location of cartilage in flexure. J Biomech 42(3):325–330CrossRefGoogle Scholar
  165. 165.
    Cannon AH, Hochhalter JD, Mello AW, Bomarito GF, Sangid MD (2015) Micro stamping for improved speckle patterns to enable digital image correlation. Microsc Microanal 21(S3):451–452CrossRefGoogle Scholar
  166. 166.
    Hung PC, Voloshin AS (2003) In-plane strain measurement by digital image correlation. J Braz Soc Mech Sci Eng 25(3):215–221CrossRefGoogle Scholar
  167. 167.
    Gates M, Gonzalez J, Lambros J, Heath MT (2015) Subset refinement for digital volume correlation: numerical and experimental applications. Exp Mech 55(1):245–259CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2017

Authors and Affiliations

  1. 1.Institute of Solid MechanicsBeihang UniversityBeijingChina

Personalised recommendations