Advertisement

Experimental Mechanics

, Volume 56, Issue 8, pp 1427–1437 | Cite as

Failure Mechanisms of Plasterboard in Nail Pull Test Determined by X-ray Microtomography and Digital Volume Correlation

  • A. Bouterf
  • J. Adrien
  • E. Maire
  • X. Brajer
  • F. Hild
  • S. Roux
Article

Abstract

To design lightweight plasterboard and optimize the compromise between thermal resistance and mechanical strength, it is important to characterize its strength as assessed with the normative “Nail pull” test. Understanding the phenomenology of this test is the key to identifying the limiting factor in terms of load carrying capacity. In this work, the degradation mechanisms of lightweight plasterboard are analyzed via tests conducted in situ in a laboratory tomograph. Through the analysis of the kinematics by digital volume correlation, the different mechanisms at play up to failure mechanism have been identified, i.e., quasi-elastic regime, failure of the roller coating layer, core compaction and core failure. The compaction of the core by the collapse of porosity in compression is recognized as the limiting factor in terms of compressive strength and tearing resistance.

Keywords

Digital volume correlation Lightweight plasterboard Nail pull test X-ray tomography 

Notes

Acknowledgments

The authors wish to thank Saint-Gobain Recherche for supporting this research project, and particularly René Gy for insightful discussions. AB is also financially supported by ANRT through contract no. 2010/567. The authors would also like to thank Dr. S. Meille for helpful discussions.

References

  1. 1.
    ASTM Standard C473-10, Standard Test Methods for Physical Testing of Gypsum Panel Products ASTM International, West Conshohocken, PA (2010) doi: 10.1520/C0473-10, www.astm.org
  2. 2.
    Wenk R J (1987) Gypsum board – opportunities and challenges. XIII Eurogypsum CongressGoogle Scholar
  3. 3.
    Kuntze RA (2009) Gypsum: connecting science and technology ASTM international 100 Barr Harbor Drive PO Box C700 West Conshohocken, PAGoogle Scholar
  4. 4.
    ASTM Standard C1396/C1396M-14, Standard Specification for Gypsum Board, ASTM International, West Conshohocken, PA (2014) doi: 10.1520/C1396_C1396M, www.astm.org
  5. 5.
    Peterson K (2000) Enginneered Gypsum Panels. Sixth International Conference on Gypsum, Ortech, International, TorontoGoogle Scholar
  6. 6.
    Private communication from BPB Research Centre, LondonGoogle Scholar
  7. 7.
    Byford et al Private communication from BPB Research Centre, LondonGoogle Scholar
  8. 8.
    Cantwell P (2003) Failure mechanism of nail pull. BPB Group Technical Department, Report number: 21717Google Scholar
  9. 9.
    Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mater Rev 59(1):1–43CrossRefGoogle Scholar
  10. 10.
    Buffière JY, Maire E., Adrien J, Masse JP, Boller E (2010) In situ experiments with X ray tomography: an attractive tool for experimental mechanics. Exp Mech 50(3):289–305CrossRefGoogle Scholar
  11. 11.
    Feldkamp LA, Davis LC, Kress JW (1984) Practical cone beam algorithm. J Opt Soc Am A1:612–619CrossRefGoogle Scholar
  12. 12.
    Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE Press, New YorkzbMATHGoogle Scholar
  13. 13.
    Bouterf A, Adrien J, Maire E, Brajer X, Hild F, Roux S (2016) Identification of the crushing behavior of brittle foam. From indentation to oedometric tests. SubmittedGoogle Scholar
  14. 14.
    Meille S, Garboczi EJ (2001) Linear elastic properties of 2D and 3D models of porous materials made from elongated objects. Model Simul Mater Sci Eng 9:371–90CrossRefGoogle Scholar
  15. 15.
    Desrues J (2004) Tracking strain localization in geomaterials using computerized tomography. In: Otani J, Obara Y (eds) X-ray CT for Geomaterials, Balkema, pp 15–41Google Scholar
  16. 16.
    Desrues J, Viggiani G, Bésuelle P (2006) Advances in X-ray tomography for geomaterials. Wiley / ISTE, LondonCrossRefGoogle Scholar
  17. 17.
    Stock SR (2008) Recent advances in X-Ray microtomography applied to materials. Int Mat Rev 53(3):129–181CrossRefGoogle Scholar
  18. 18.
    Colliat-Dangus JL, Desrues J, Foray P (1988) Triaxial testing of granular soil under elevated cell pressure. In: Donaghe R T, Chaney R C, Silver M L (eds) Advanced triaxial testing of soil and rock ASTM STP 977. American Society for Testing and Materials, Philadelphia, pp 290–310Google Scholar
  19. 19.
    Desrues J, Chambon R, Mokni M, Mazerolle F (1996) Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3):529–546CrossRefGoogle Scholar
  20. 20.
    Guvenilir A, Breunig TM, Kinney JH, Stock SR (1997) Direct observation of crack opening as a function of applied load in the interior of a notched tensile sample of Al-Li2090. Acta Materialia 45:1977–1987CrossRefGoogle Scholar
  21. 21.
    Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39:217–226CrossRefGoogle Scholar
  22. 22.
    Elliot JA, Windele AH, Hobdell J R, Eeckhaut G, Olman RJ, Ludwig W, Boller E, Cloetens P, Baruchel J (2002) In situ deformation of an open-cell flexible polyurethane foam characterized by 3D computed microtomography. J Mater Sci 37:1547–1555CrossRefGoogle Scholar
  23. 23.
    Buffière JY, Maire E, Adrien J, Masse JP, Boller E (2010) In situ experiments with X ray tomography: an attractive tool for experimental mechanics. Exp Mech 50:289–305CrossRefGoogle Scholar
  24. 24.
    Smith TS, Bay BK, Rashid M (2002) Digital volume correlation including rotational degrees of freedom during minimization. Exp Mech 42:272–278CrossRefGoogle Scholar
  25. 25.
    Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. SpringerGoogle Scholar
  26. 26.
    Bornert M, Chaix JM, Doumalin P, Dupré JC, Fournel T, Jeulin D, Maire E, Moreaud M, Moulinec H (2004) Mesure tridimentionnelle de champs cinématiques par imagerie volumique pour l’analyse des matériaux et des structures. Inst Mes Métrol 4:43–88Google Scholar
  27. 27.
    Verhulp E, van Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech 37(9):1313–1320CrossRefGoogle Scholar
  28. 28.
    Franck C, Hong S, Maskarinec SA, Tirrell DA, Ravichandran G (2007) Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp Mech 47:427–438CrossRefGoogle Scholar
  29. 29.
    Germaneau A, Doumalin P, Dupré JC (2007) Full 3D measurement of strain field by scattered light for analysis of structures. Exp Mech 47(4):523–532CrossRefGoogle Scholar
  30. 30.
    Hall S, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani C, Bésuelle P (2010) Discrete and continuum analysis of localised deformation in sand using X-ray micro CT and volumetric digital image correlation. Géotechnique 60(5):315–322CrossRefGoogle Scholar
  31. 31.
    Roux S, Hild F, Viot P, Bernard D (2008) Three-dimensional image correlation from X-ray computed tomography of solid foam. Compos Part A 39:1253–1265CrossRefGoogle Scholar
  32. 32.
    Hild F, Maire E, Roux S, Witz JF (2009) Three dimensional analysis of a compression test on stone wool. Acta Materialia 7:3310–3320CrossRefGoogle Scholar
  33. 33.
    Limodin N, Réthoré J, Buffière J-Y, Gravouil A, Hild F, Roux S (2009) Crack closure and stress intensity factor measurements in nodular graphite cast iron using 3D correlation of laboratory X ray microtomography images. Acta Materialia 57:4090–4101CrossRefGoogle Scholar
  34. 34.
    Rannou J, Limodin N, Réthoré J, Gravouil A, Ludwig W, Baïetto-Dubourg MC, Buffière JY, Combescure A, Hild F, Roux S (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Methods Appl Mech Eng 199, 21–22:1307–1325CrossRefzbMATHGoogle Scholar
  35. 35.
    Leclerc H, Périé JN, Hild F, Roux S (2012) Digital Volume Correlation: What are the limits to the spatial resolution? Mech Indust 13:361–371CrossRefGoogle Scholar
  36. 36.
    Taillandier-Thomas T, Roux S, Morgeneyer TF, Hild F (2014) Localised strain field measurement on laminography data with mechanical regularization. Nucl Instrum Methods Phys Res Sec B 324:70–79CrossRefGoogle Scholar
  37. 37.
    Hild F, Fanget A, Adrien J, Maire E, Roux S (2011) Three dimensional analysis of a tensile test on a propellant with digital volume correlation. Arch Mech 63(5-6):1–20Google Scholar
  38. 38.
    Limodin N, Réthoré J, Adrien J, Buffière JY, Hild F, Roux S (2011) Analysis and artifact correction for volume correlation measurements using tomographic images from a laboratory X-ray source. Exp Mech 51(6):959–970CrossRefGoogle Scholar
  39. 39.
    Bouterf A, Roux S, Hild F, Adrien J, Maire E, Meille S (2014) Digital volume correlation applied to X-ray tomography images from spherical indentation tests on lightweight gypsum. Strain 50(5):444–453CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2016

Authors and Affiliations

  • A. Bouterf
    • 1
    • 3
  • J. Adrien
    • 2
  • E. Maire
    • 2
  • X. Brajer
    • 3
  • F. Hild
    • 1
  • S. Roux
    • 1
  1. 1.LMT-CachanENS Cachan/CNRS/Université Paris-SaclayCachan CedexFrance
  2. 2.MATEIS-INSA de LyonVilleurbanne CedexFrance
  3. 3.Saint-Gobain RechercheAubervilliers CedexFrance

Personalised recommendations