Advertisement

Experimental Mechanics

, Volume 56, Issue 7, pp 1203–1217 | Cite as

Depth-Resolved Full-Field Measurement of Corneal Deformation by Optical Coherence Tomography and Digital Volume Correlation

  • J. FuEmail author
  • M. Haghighi-Abayneh
  • F. Pierron
  • P. D. Ruiz
Article

Abstract

The study of vertebrate eye cornea is an interdisciplinary subject and the research on its mechanical properties has significant importance in ophthalmology. The measurement of depth-resolved 3D full-field deformation behaviour of cornea under changing intraocular pressure is a useful method to study the local corneal mechanical properties. In this work, optical coherence tomography was adopted to reconstruct the internal structure of a porcine cornea inflated from 15 to 18.75 mmHg (close to the physical porcine intraocular pressure) in the form of 3D image sequences. An effective method has been developed to correct the commonly seen refraction induced distortions in the optical coherence tomography reconstructions, based on Fermat’s principle. The 3D deformation field was then determined by performing digital volume correlation on these corrected 3D reconstructions. A simple finite element model of the inflation test was developed and the predicted values were compared against digital volume correlation results, showing good overall agreement.

Keywords

Cornea Optical coherence tomography Refraction correction Digital volume correlation 3D full-field deformation measurement Inflation test 

Notes

Acknowledgments

The authors would like to thank the China Scholarship Council and the Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, for their financial support. Professor Pierron gratefully acknowledges support from the Royal Society and the Wolfson Foundation through a Royal Society Wolfson Research Merit Award.

References

  1. 1.
    Atchison DA, Smith G (2000) Chapter 2—Refracting components: cornea and lens. In: Smith DAA (ed) Optics of the human eye. Butterworth-Heinemann, Edinburgh, pp 11–20CrossRefGoogle Scholar
  2. 2.
    Fatt I, Weissman BA (1992) Physiology of the eye, 2nd edn. Butterworth-Heinemann, Edinburgh, pp 97–149CrossRefGoogle Scholar
  3. 3.
    Browning AC et al (2004) The effect of corneal thickness on intraocular pressure measurement in patients with corneal pathology. Br J Ophthalmol 88(11):1395–1399CrossRefGoogle Scholar
  4. 4.
    Krachmer JH, Feder RS, Belin MW (1984) Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol 28(4):293–322CrossRefGoogle Scholar
  5. 5.
    Notara M et al (2010) In sickness and in health: corneal epithelial stem cell biology, pathology and therapy. Exp Eye Res 90(2):188–195CrossRefGoogle Scholar
  6. 6.
    Robin JB et al (1986) Peripheral corneal disorders. Surv Ophthalmol 31(1):1–36MathSciNetCrossRefGoogle Scholar
  7. 7.
    Tarkkanen A, Merenmies L (2001) Corneal pathology and outcome of keratoplasty in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). Acta Ophthalmol Scand 79(2):204–207CrossRefGoogle Scholar
  8. 8.
    De Paiva CS et al (2006) The incidence and risk factors for developing dry eye after myopic LASIK. Am J Ophthalmol 141(3):438–445MathSciNetCrossRefGoogle Scholar
  9. 9.
    Asejczyk-Widlicka M et al (2011) Material properties of the cornea and sclera: a modelling approach to test experimental analysis. J Biomech 44(3):543–546CrossRefGoogle Scholar
  10. 10.
    Bryant MR, McDonnell PJ (1996) Constitutive laws for biomechanical modeling of refractive surgery. J Biomech Eng 118(4):473–481CrossRefGoogle Scholar
  11. 11.
    Kwon TH et al (2008) Effect of cornea material stiffness on measured intraocular pressure. J Biomech 41(8):1707–1713CrossRefGoogle Scholar
  12. 12.
    Norman RE et al (2011) Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp Eye Res 93(1):4–12CrossRefGoogle Scholar
  13. 13.
    Anderson K, El-Sheikh A, Newson T (2004) Application of structural analysis to the mechanical behaviour of the cornea. J R Soc Interface 1(1):3–15CrossRefGoogle Scholar
  14. 14.
    Boyce BL et al (2008) Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials 29(28):3896–3904CrossRefGoogle Scholar
  15. 15.
    Chu TC, Ranson WF, Sutton MA (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25(3):232–244CrossRefGoogle Scholar
  16. 16.
    Elsheikh A, Alhasso D, Rama P (2008) Biomechanical properties of human and porcine corneas. Exp Eye Res 86(5):783–790CrossRefGoogle Scholar
  17. 17.
    Ehlers N, Bramsen T, Sperling S (1975) Applanation tonometry and central corneal thickness. Acta Ophthalmol 53(1):34–43CrossRefGoogle Scholar
  18. 18.
    Siganos DS, Papastergiou GI, Moedas C (2004) Assessment of the Pascal dynamic contour tonometer in monitoring intraocular pressure in unoperated eyes and eyes after LASIK. J Cataract Refract Surg 30(4):746–751CrossRefGoogle Scholar
  19. 19.
    Whitacre MM, Stein RA, Hassanein K (1993) The effect of corneal thickness on applanation tonometry. Am J Ophthalmol 115(5):592–596CrossRefGoogle Scholar
  20. 20.
    Luce DA (2005) Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 31(1):156–162MathSciNetCrossRefGoogle Scholar
  21. 21.
    Shah S et al (2007) Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Investig Ophthalmol Vis Sci 48(7):3026–3031CrossRefGoogle Scholar
  22. 22.
    Hong J et al (2013) A new tonometer--the Corvis ST tonometer: clinical comparison with noncontact and Goldmann applanation tonometers. Invest Ophthalmol Vis Sci 54(1):659–665CrossRefGoogle Scholar
  23. 23.
    Ji C et al (2015) Dynamic curvature topography for evaluating the anterior corneal surface change with Corvis ST. BioMed Eng Online 14(1):53CrossRefGoogle Scholar
  24. 24.
    Koprowski R et al (2014) Selected parameters of the corneal deformation in the Corvis tonometer. BioMed Eng Online 13(1):55MathSciNetCrossRefGoogle Scholar
  25. 25.
    Fercher AF (2010) Optical coherence tomography—development, principles, applications. Z Med Phys 20(4):251–276CrossRefGoogle Scholar
  26. 26.
    Gambichler T, Jaedicke V, Terras S (2011) Optical coherence tomography in dermatology: technical and clinical aspects. Arch Dermatol Res 303(7):457–473CrossRefGoogle Scholar
  27. 27.
    Kaluzny BJ et al (2006) Spectral optical coherence tomography: a novel technique for cornea imaging. Cornea 25(8):960–965CrossRefGoogle Scholar
  28. 28.
    Kiernan DF, Mieler WF, Hariprasad SM (2010) Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol 149(1):18–31CrossRefGoogle Scholar
  29. 29.
    Kennedy BF et al (2012) Strain estimation in phase-sensitive optical coherence elastography. Biomed Opt Express 3(8):1865–1879CrossRefGoogle Scholar
  30. 30.
    Kirkpatrick SJ, Wang RK, Duncan DD (2006) OCT-based elastography for large and small deformations. Opt Express 14(24):11585–11597CrossRefGoogle Scholar
  31. 31.
    Sun C, Standish B, Yang VXD (2011) Optical coherence elastography: current status and future applications. J Biomed Opt 16(4):043001CrossRefGoogle Scholar
  32. 32.
    Wang RK, Kirkpatrick S, Hinds M (2007) Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time. Appl Phys Lett 90(16):164105CrossRefGoogle Scholar
  33. 33.
    Zaitsev VY et al (2014) Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability. J Biomed Opt 19(2):21107CrossRefGoogle Scholar
  34. 34.
    Ford MR et al (2011) Method for optical coherence elastography of the cornea. J Biomed Opt 16(1):016005CrossRefGoogle Scholar
  35. 35.
    Kennedy BF et al (2011) In vivo three-dimensional optical coherence elastography. Opt Express 19(7):6623–6634CrossRefGoogle Scholar
  36. 36.
    Li J, Wang S, Singh M, Aglyamov S, Emelianov S, Twa M, Larin KV 2014. Air-puff OCE for assessment of mouse cornea in vivo, Progress in Biomedical Optics and Imaging - Proceedings of SPIE.Google Scholar
  37. 37.
    Twa MD et al (2014) Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking. Biomed Opt Express 5(5):1419–1427CrossRefGoogle Scholar
  38. 38.
    Wang S, Larin KV (2014) Noncontact depth-resolved micro-scale optical coherence elastography of the cornea. Biomed Opt Express 5(11):3807–3821CrossRefGoogle Scholar
  39. 39.
    Manapuram RK et al (2012) In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography. J Biomed Opt 17(10):100501CrossRefGoogle Scholar
  40. 40.
    Nguyen TM, Song S, Shi L, Wang RK, O'Donnell M, Shen TT, Huang Z 2014. Shear wave elastography of ex vivo human corneas using phase-sensitive optical coherence tomography, IEEE International Ultrasonics Symposium, IUS, pp 217–220Google Scholar
  41. 41.
    Nguyen TD, Boyce BL (2011) An inverse finite element method for determining the anisotropic properties of the cornea. Biomech Model Mechanobiol 10(3):323–337CrossRefGoogle Scholar
  42. 42.
    Pandolfi A, Holzapfel GA (2008) Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations. J Biomech Eng 130(6):061006CrossRefGoogle Scholar
  43. 43.
    Pandolfi A, Manganiello F (2006) A model for the human cornea: constitutive formulation and numerical analysis. Biomech Model Mechanobiol 5(4):237–246CrossRefGoogle Scholar
  44. 44.
    Avril S, Badel P, Duprey A (2010) Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements. J Biomech 43(15):2978–2985CrossRefGoogle Scholar
  45. 45.
    Fu J, Pierron F, Ruiz PD (2013) Elastic stiffness characterization using three-dimensional full-field deformation obtained with optical coherence tomography and digital volume correlation. J Biomed Opt 18(12):121512CrossRefGoogle Scholar
  46. 46.
    Kim J-H et al (2012) Experimental characterization of rupture in human aortic aneurysms using a full-field measurement technique. Biomech Model Mechanobiol 11(6):841–853CrossRefGoogle Scholar
  47. 47.
    Pierron F, Grediac M (2012) The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements. Springer, New York, pp 1–517CrossRefGoogle Scholar
  48. 48.
    Moussawi A et al (2013) The constitutive compatibility method for identification of material parameters based on full-field measurements. Comput Methods Appl Mech Eng 265:1–14MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Chakraborty S, Ruiz PD (2012) Measurement of all orthogonal components of displacement in the volume of scattering materials using wavelength scanning interferometry. J Opt Soc Am A Opt Image Sci Vis 29(9):1776–1785CrossRefGoogle Scholar
  50. 50.
    Bay BK et al (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39(3):217–226CrossRefGoogle Scholar
  51. 51.
    Brault R et al (2013) In-situ analysis of laminated composite materials by X-ray micro-computed tomography and digital volume correlation. Exp Mech 53(7):1143–1151CrossRefGoogle Scholar
  52. 52.
    Gillard F et al (2014) The application of digital volume correlation (DVC) to study the microstructural behaviour of trabecular bone during compression. J Mech Behav Biomed Mater 29:480–499CrossRefGoogle Scholar
  53. 53.
    Limodin N et al (2010) Influence of closure on the 3D propagation of fatigue cracks in a nodular cast iron investigated by X-ray tomography and 3D volume correlation. Acta Mater 58(8):2957–2967CrossRefGoogle Scholar
  54. 54.
    Pierron F et al (2013) Comparison of the mechanical behaviour of standard and Auxetic foams by X-ray computed tomography and digital volume correlation. Strain 49(6):467–482CrossRefGoogle Scholar
  55. 55.
    Nahas A et al (2013) 3D static elastography at the micrometer scale using Full Field OCT. Biomed Opt Express 4(10):2138–2149CrossRefGoogle Scholar
  56. 56.
    Ortiz S et al (2009) Optical coherence tomography for quantitative surface topography. Appl Opt 48(35):6708–6715MathSciNetCrossRefGoogle Scholar
  57. 57.
    Podoleanu A et al (2004) Correction of distortions in optical coherence tomography imaging of the eye. Phys Med Biol 49(7):1277–1294CrossRefGoogle Scholar
  58. 58.
    Van Der Jeught S et al (2013) Real-time correction of geometric distortion artefacts in large-volume optical coherence tomography. Meas Sci Technol 24(5):057001CrossRefGoogle Scholar
  59. 59.
    Patel S, Marshall J, Fitzke Iii FW (1995) Refractive index of the human corneal epithelium and stroma. J Refract Surg 11(2):100–105Google Scholar
  60. 60.
    Westphal V et al (2002) Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle. Opt Express 10(9):397–404CrossRefGoogle Scholar
  61. 61.
    Hamilton KE, Pye DC (2008) Young’s modulus in normal corneas and the effect on applanation tonometry. Optom Vis Sci 85(6):445–450CrossRefGoogle Scholar
  62. 62.
    MacRae S, Schwiegerling J, Snyder RW (1999) Customized and low spherical aberration corneal ablation design. J Refract Surg 15(2 Suppl):S246–S248Google Scholar
  63. 63.
    Komai Y, Ushiki T (1991) The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci 32(8):2244–2258Google Scholar

Copyright information

© Society for Experimental Mechanics 2016

Authors and Affiliations

  • J. Fu
    • 1
    Email author
  • M. Haghighi-Abayneh
    • 1
  • F. Pierron
    • 2
  • P. D. Ruiz
    • 1
  1. 1.Wolfson School of Mechanical and Manufacturing EngineeringLoughborough UniversityLoughboroughUK
  2. 2.Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK

Personalised recommendations