Advertisement

Experimental Mechanics

, Volume 56, Issue 7, pp 1231–1242 | Cite as

Mesh-Based Shape Measurements with Stereocorrelation

Principle and First Results
  • L. Dubreuil
  • J.-E. Dufour
  • Y. Quinsat
  • François Hild
Article

Abstract

A mesh-based framework is developed by extending global stereocorrelation techniques to faceted surfaces with three-noded elements. A two-step self-calibration procedure is followed to determine the projection matrices of the stereo-rig and to update the nominal surface model to match the surface of interest. To prove the feasibility of mesh-based stereocorrelation, two different test parts are analyzed with the present techniques and compared to already validated optical procedures.

Keywords

Calibration DIC Finite element discretization Photogrammetry Stereocorrelation 

References

  1. 1.
    Barbero BR, Santos Ureta E (2011) Comparative study of different digitization techniques and their accuracy. Comput Aided Des 43(2):188–206CrossRefGoogle Scholar
  2. 2.
    Beaubier B, Dufour JE, Hild F, Roux S, Lavernhe-Taillard S, Lavernhe-Taillard K (2014) CAD-based calibration of a 3d-DIC system principle and application on test and industrial parts. Exp Mech 54(3):329–341CrossRefGoogle Scholar
  3. 3.
    Be\(\check {\mathrm {s}}\)ić I, Van Gestel N, Kruth J-P, Bleys P, Hodolić J (2011) Accuracy improvement of laser line scanning for feature measurements on CMM. Opt Lasers Eng 49(11):1274–1280Google Scholar
  4. 4.
    Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Patt Anal Mach Intell 14(2):239–256CrossRefGoogle Scholar
  5. 5.
    Bouguet J-Y (2010) Camera calibartion toolbox for matlabGoogle Scholar
  6. 6.
    Chen Y, Medioni G (1992) Object modelling by registration of multiple range images. Image Vis Comput 10(3):145– 155CrossRefGoogle Scholar
  7. 7.
    Chua CK, Leong KF, Lim CS (2003) Rapid Prototyping: Principles and Applications (2nd ed.) World Scientific PublishingGoogle Scholar
  8. 8.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric Analysis: Toward Integration of CAD and FEA. WileyGoogle Scholar
  9. 9.
    Cuypers W, Van Gestel N, Voet A, Kruth J. -P., Mingneau J, Bleys P (2009) Optical measurement techniques for mobile and large-scale dimensional metrology. Opt Lasers Eng 47(3-4):292– 300CrossRefGoogle Scholar
  10. 10.
    Dassault Systems (2008) CATIA V5 R19, online documentation. http://www.3ds.com/products/catia/welcome/
  11. 11.
    Dufour J-E, Beaubier B, Hild F, Roux S (2015) CAD-Based displacement measurements. Principle and first validations. Exp Mech 55(9):1657–1668CrossRefGoogle Scholar
  12. 12.
    Dufour J-E, Hild F, Roux S (2015) Shape, displacement and mechanical properties from isogeometric multiview stereocorrelation. J Strain Anal 50(7):470–487CrossRefGoogle Scholar
  13. 13.
    Dufour J-E, Leclercq S, Schneider J, Hild F, Roux S (2016) 3D surface measurements with isogeometric stereocorrelation. Application to complex shapes. Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2016.02.018
  14. 14.
    Dufour JE, Beaubier B, Roux S, Hild F (2014) Displacement measurement using CAD-based stereo-correlation with meshes. In: ICEM conference procGoogle Scholar
  15. 15.
    Faugeras O (1993) Three-dimensional computer vision: a geometric viewpoint. MIT Press, CambridgeGoogle Scholar
  16. 16.
    Faugeras O, Toscani G (1987) Camera calibration for 3D computer vision. International Workshop on Machine Vision and Machine Intelligence, 240–247Google Scholar
  17. 17.
    Faugeras OD, Luong QT, Maybank SJ (1992) Camera self-calibration: Theory and experiments. In: Proc. 2nd ECCV. Springer-Verlag, pp 321–334Google Scholar
  18. 18.
    Fusiello A (2000) Uncalibrated euclidean reconstruction: A review. Im vis comput 18:555–563CrossRefGoogle Scholar
  19. 19.
    Harvent J, Coudrin B, Brèthes L, Orteu J-J, Devy M (2013) Multi-view dense 3D modelling of untextured objects from a moving projector-cameras system. Mach Vis Appl 24(8):1645– 1659CrossRefGoogle Scholar
  20. 20.
    Helm JD, McNeill SR, Sutton MA (1996) Improved three-dimensional image correlation for surface displacement measurement. Opt Eng 35(7):1911–1920CrossRefGoogle Scholar
  21. 21.
    Hild F, Roux S (2012) Digital image correlation. In: Rastogi P., Hack E. (eds) Optical Methods for Solid Mechanics. A full-Fild Approach. Wiley-VCH, Weinheim (Germany)Google Scholar
  22. 22.
    Katz S, Tal A, Basri R (2007) Direct visibility of point sets. ACM Trans Graph 26(3)Google Scholar
  23. 23.
    Lavest J-M, Viala M, Dhome M (1999) Quelle précision pour une mire d’étalonnage?Google Scholar
  24. 24.
    Li Y, Gu P (2004) Free-form surface inspection techniques state of the art review. Comput.-Aided Des 36 (13):1395–1417CrossRefGoogle Scholar
  25. 25.
    Blue Ribbon Panel (2006) Simulation-based engineering sciences. Final report, NFS (www.nsf.gov/pubs/reports/sbes_final_report.pdf)
  26. 26.
    Piegl L, Tiller W (1997) The NURBS Book. Springer 2nd editionGoogle Scholar
  27. 27.
    Réthoré J, Muhibullah T, Coret M, Chaudet P, Combescure A (2013) Robust identification of elasto-plastic constitutive law parameters from digital images using 3D kinematics. Int J Elguedj Solids Struct 50 (1):73–85CrossRefGoogle Scholar
  28. 28.
    Rupil J, Roux S, Hild F, Vincent L (2011) Fatigue microcrack detection with digital image correlation. J Strain Anal 46(6):492–509CrossRefGoogle Scholar
  29. 29.
    Sansoni G, Trebeschi M, Docchio F (2009) State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation. Sensors 9(1):568–601CrossRefGoogle Scholar
  30. 30.
    Savio E, De Chiffre L, Schmitt R (2007) Metrology of freeform shaped parts. CIRP Ann Manuf Technol 56(2):810–835CrossRefGoogle Scholar
  31. 31.
    Schwenke H, Neuschaefer-Rube U, Pfeifer T, Kunzmann H (2002) Optical methods for dimensional metrology in production engineering. CIRP Ann Manuf Technol 51(2):685–699CrossRefGoogle Scholar
  32. 32.
    Seitz SM, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evaluation of multi-view stereo reconstruction algorithms. Proc IEEE Conf Comput Vis Pattern Recognit 1:519–526Google Scholar
  33. 33.
    Sutton MA (2013) Computer vision-based, noncontacting deformation measurements in mechanics: A generational transformation. Appl Mech Rev 65. (AMR-13-1009 050802)Google Scholar
  34. 34.
    Sutton MA, Hild F (2015) Recent advances and perspectives in digital image correlation. Exp Mech 55 (1):1–8CrossRefGoogle Scholar
  35. 35.
    Sutton MA, Orteu J-J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications. Springer Publishing Company, IncorporatedGoogle Scholar
  36. 36.
    Vu HH, Labatut P, Pons JP, Keriven R (2012) High accuracy and visibility-consistent dense multiview stereo. IEEE Trans Pattern Anal Machine Intell 34(5):889–901CrossRefGoogle Scholar
  37. 37.
    Zhang Z (1994) Iterative point matching for registration of free-form curves and surfaces. Int J Comput Vis 13(2):119–152CrossRefGoogle Scholar
  38. 38.
    Zienkievicz OC, Taylor RL (1989) The finite element method. McGraw-Hill, London (UK), 4th editionGoogle Scholar
  39. 39.
    Zuquete-Guarato A, Mehdi-Souzani C, Quinsat Y, Lartigue C, Sabri L (2012) Towards a new concept of in-line crankshaft balancing by contact less measurement: process for selesction the best digitizing systemGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2016

Authors and Affiliations

  1. 1.LURPAENS Cachan/University Paris-Sud/Univeersity Paris-SaclayCachanFrance
  2. 2.LMT-Cachan, ENS Cachan/CNRS/University Paris-SaclayCachanFrance

Personalised recommendations