Advertisement

Experimental Mechanics

, Volume 56, Issue 6, pp 919–944 | Cite as

On the Propagation of Camera Sensor Noise to Displacement Maps Obtained by DIC - an Experimental Study

  • B. Blaysat
  • M. Grédiac
  • F. Sur
Article

Abstract

This paper focuses on one of the metrological properties of DIC, namely displacement resolution. More specifically, the study aims to validate, in the environment of an experimental mechanics laboratory, a recent generalized theoretical prediction of displacement resolution. Indeed, usual predictive formulas available in the literature neither take into account sub-pixel displacement, nor have been validated in an experimental mechanics laboratory environment, nor are applicable to all types of DIC (Global as well as Local). Here, the formula used to account for sub-pixel displacements is first recalled, and an accurate model of the sensor noise is introduced. The hypotheses required for the elaboration of this prediction are clearly stated. The formula is then validated using experimental data. Since rigid body motion between the specimen and the camera impairs the experimental data, and since sensor noise is signal-dependent, particular tools need to be introduced in order to ensure the consistency between the observed image noise and the model on which prediction hypotheses are based. Pre-processing tools introduced for another full-field measurement approach, namely the Grid Method, are employed to address these issues.

Keywords

Digital image correlation Displacement maps Generalized Anscombe transform Measurement resolution Micro-movements Noise Resolution prediction 

Notes

Acknowledgments

The research group “GDR - ISIS” (CNRS) is gratefully acknowledged for its financial support (project “TIMEX”).

References

  1. 1.
    Anscombe F (1948) The transformation of Poisson binomial and negative-binomial data. Biometrika 35 (3–4):246–254MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Besnard G, Hild F, Roux S (2006) Finite-element displacement fields analysis from digital images: application to Portevin-Le Châtelier bands. Exp Mech 46(6):789–803CrossRefGoogle Scholar
  3. 3.
    Blaysat B, Florentin E, Lubineau G, Moussawi A (2012) A dissipation gap method for full-field measurement-based identification of elasto-plastic material parameters. Int J Numer Methods Eng 91(7):685–704MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Blaysat B, Grédiac M, Sur F (2015) Effect of interpolation in noise propagation from images to DIC displacement maps. Int J Numer Methods Eng (available online). doi: 10.1002/nme.5212 Google Scholar
  5. 5.
    Blaysat B, Hoefnagels JPM, Lubineau G, Alfano M, Geers MGD (2015) Interface debonding characterization by image correlation integrated with double cantilever beam kinematics. Int J Solids Struct 55:79–91, 3CrossRefGoogle Scholar
  6. 6.
    Bossuyt S (2013) Optimized patterns for digital image correlation. In: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics, vol 3: Imaging Methods for Novel Materials and Challenging Applications, pp 239–248. Springer, New YorkGoogle Scholar
  7. 7.
    Boulanger J, Kervrann C, Bouthemy P, Elbau P, Sibarita J-B, Salamero J (2010) Patch-based nonlocal functional for denoising fluorescence microscopy image sequences. IEEE Trans Med Imaging 29(2):442–454CrossRefGoogle Scholar
  8. 8.
    Chu TC, Ranson WF, Sutton MA (1985) Applications of Digital-Image-Correlation techniques to experimental mechanics. Exp Mech 25(3):232–244CrossRefGoogle Scholar
  9. 9.
    Fayolle X, Hild F (2014) Controlling stress intensity factor histories with digital images. Exp Mech 54 (2):305–314CrossRefGoogle Scholar
  10. 10.
    Fedele R, Galantucci L, Ciani A (2013) Global 2D digital image correlation for motion estimation in a finite element framework: a variational formulation and a regularized, pyramidal, multi-grid implementation. Int J Numer Methods Eng 96(12):739–762CrossRefGoogle Scholar
  11. 11.
    Foi A, Trimeche M, Katkovnik V, Egiazarian K (2008) Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Trans Image Process 17(10):1737–1754MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gras R, Leclerc H, Hild F, Roux S, Schneider J (2015) Identification of a set of macroscopic elastic parameters in a 3D woven composite: Uncertainty analysis and regularization. Int J Solids Struct 55:2–16CrossRefGoogle Scholar
  13. 13.
    Grédiac M, Hild F (2013) Full-field measurements and identification in solid mechanics. Wiley Online LibraryGoogle Scholar
  14. 14.
    Grédiac M, Sur F (2014) Effect of sensor noise on the resolution and spatial resolution of displacement and strain maps estimated with the grid method. Strain 50(1):1–27CrossRefGoogle Scholar
  15. 15.
    Gut A (2009) An Intermediate Course in Probability. SpringerGoogle Scholar
  16. 16.
    Healey G, Kondepudy R (1994) Radiometric CCD camera calibration and noise estimation. IEEE Trans Pattern Analy Mach Intell 16(3):267–276CrossRefGoogle Scholar
  17. 17.
    Hild F, Roux S Digital Image Correlation: An experimental mechanics tool, Internal report. LMT-CachanGoogle Scholar
  18. 18.
    Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52:1503–1519CrossRefGoogle Scholar
  19. 19.
    Holst GC (1998) CCD Arrays Cameras and Displays. JCD PublishingGoogle Scholar
  20. 20.
    JCGM Member Organizations (2012) International vocabulary of metrology – Basic and general concepts and associated terms (VIM), vol 200. BIPMGoogle Scholar
  21. 21.
    Ke XD, Schreier HW, Sutton MA, Wang YQ (2011) On error assessment in stereo-based deformation measurements. Exp Mech 51(4):423–441CrossRefGoogle Scholar
  22. 22.
    Lecompte D, Smits A, Bossuyt S, Sol H, Vantomme J, Hemelrijck DV, Habraken A (2006) Quality assessment of speckle patterns for digital image correlation. Opt Lasers Eng 44(11):1132– 1145CrossRefGoogle Scholar
  23. 23.
    Mathieu F, Leclerc H, Hild F, Roux S (2015) Estimation of elastoplastic parameters via weighted FEMU and Integrated DIC. Exp Mech 55(1):105–119CrossRefGoogle Scholar
  24. 24.
    Murtagh F, Starck J-L, Bijaoui A (1995) Image restoration with noise suppression using a multiresolution support. Astron Astrophys Suppl Ser 112:179–189Google Scholar
  25. 25.
    Neggers J, Blaysat B, Hoefnagels JPM, Geers MGD (2016) On image gradients in digital image correlation. Int J Numer Methods Eng 105(4):243–260MathSciNetCrossRefGoogle Scholar
  26. 26.
    Pan B, Wang B, Lubineau G, Moussawi A (2015) Comparison of subset-based local and finite element-based global digital image correlation. Exp Mech:1–15Google Scholar
  27. 27.
    Pan B, Xie H, Wang Z (2010) Equivalence of digital image correlation criteria for pattern matching. Appl Opt 49(28):5501–5509CrossRefGoogle Scholar
  28. 28.
    Pan B, Xie H, Wang Z, Qian K, Wang Z (2008) Study on subset size selection in digital image correlation for speckle patterns. Opt Express 16(10):7037–7048CrossRefGoogle Scholar
  29. 29.
    Pan B, Yu L, Wu D (2013) High-accuracy 2d digital image correlation measurements with bilateral telecentric lenses: Error analysis and experimental verification. Exp Mech 53(9):1719–1733CrossRefGoogle Scholar
  30. 30.
    Pan B, Yu L, Wu D, Tang L (2013) Systematic errors in two-dimensional digital image correlation due to lens distortion. Opt Lasers Eng 51(2):140–147, 2CrossRefGoogle Scholar
  31. 31.
    Passieux J-C, Bugarin F, David C, Périé J-N, Robert L (2014) Multiscale displacement field measurement using digital image correlation: Application to the identification of elastic properties. Exp Mech 1–17Google Scholar
  32. 32.
    Passieux J-C, Bugarin F, David C, Périé J-N, Robert L (2015) Multiscale displacement field measurement using digital image correlation: Application to the identification of elastic properties. Exp Mech 55 (1):121–137CrossRefGoogle Scholar
  33. 33.
    Passieux J-C, Périé JN, Salaün M (2015) A dual domain decomposition method for finite element digital image correlation. Int J Numer Methods Eng 102(10):1670–1682MathSciNetCrossRefGoogle Scholar
  34. 34.
    Piro JL, Grédiac M (2004) Producing and transferring low-spatial-frequency grids for measuring displacement fields with moiré and grid methods. Exp Tech 28(4):23–26CrossRefGoogle Scholar
  35. 35.
    Réthoré J (2010) A fully integrated noise robust strategy for the identification of constitutive laws from digital images. Int J Numer Methods Eng 84(6):631–660CrossRefMATHGoogle Scholar
  36. 36.
    Réthoré J, Besnard G, Vivier G, Hild F, Roux S (2008) Experimental investigation of localized phenomena using digital image correlation. Phil Mag 88(28–29):3339–3355CrossRefGoogle Scholar
  37. 37.
    Réthoré J, Hild F, Roux S (2008) Extended digital image correlation with crack shape optimization. Int J Numer Methods Eng 73(2):248–272MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Réthoré J, Roux S, Hild F (2009) An extended and integrated digital image correlation technique applied to the analysis of fractured samples. European Journal of Computational Mechanics 18(3–4):285–306MATHGoogle Scholar
  39. 39.
    Réthoré J, Roux S, Hild F (2011) Optimal and noise-robust extraction of fracture mechanics parameters from kinematic measurements. Eng Fract Mech 78(9):1827–1845CrossRefGoogle Scholar
  40. 40.
    Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140:141–157CrossRefMATHGoogle Scholar
  41. 41.
    Schreier H, Orteu J-J, Sutton MA (2009) Image correlation for shape, motion and deformation measurements: Basic Concepts, Theory and Applications. SpringerGoogle Scholar
  42. 42.
    Sur F, Grédiac M (2014) Sensor noise modeling by stacking pseudo-periodic grid images affected by vibrations. IEEE Sig Process Lett 21(4):432–436CrossRefGoogle Scholar
  43. 43.
    Sur F, Grédiac M (2015) Measuring the noise of digital imaging sensors by stacking raw images affected by vibrations and illumination flickering. SIAM J Imaging Sci 8(1):611–643MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Sur F, Grédiac M (2015) On noise reduction in strain maps obtained with the grid method by averaging images affected by vibrations. Opt Lasers Eng 66:210–222CrossRefGoogle Scholar
  45. 45.
    Sur F, Noury N, Berger M-O (2008) Computing the uncertainty of the 8 point algorithm for fundamental matrix estimation. In: Proceedings of the British Machine Vision Conference (BMVC), vol 2, pp 965–974, LeedsGoogle Scholar
  46. 46.
    Sutton M, Yan J, Tiwari V, Schreier H, Orteu J (2008) The effect of out-of-plane motion on 2d and 3d digital image correlation measurements. Optics Lasers Eng 46(10):746–757CrossRefGoogle Scholar
  47. 47.
    Sutton MA, Mingqi C, Peters WH, Chao YJ, McNeill SR (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4(3):143– 150CrossRefGoogle Scholar
  48. 48.
    Tong W (2013) Reduction of noise-induced bias in displacement estimation by linear off-pixel digital image correlation. Strain 49(2):158–166CrossRefGoogle Scholar
  49. 49.
    Wang YQ, Sutton MA, Bruck HA, Schreier HW (2009) Quantitative error assessment in pattern matching: Effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements. Strain 45(2):160–178CrossRefGoogle Scholar
  50. 50.
    Wang YQ, Sutton MA, Ke XD, Schreier HW, Reu PL, Miller TJ (2011) On error assessment in stereo-based deformation measurements. Exp Mech 51(4):405–422CrossRefGoogle Scholar
  51. 51.
    Wang ZY, Li HQ, Tong JW, Ruan JT (2007) Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images. Exp Mech 47 (5):701–707CrossRefGoogle Scholar
  52. 52.
    Wittevrongel L, Lava P, Lomov SV, Debruyne D (2015) A self adaptive global digital image correlation algorithm. Exp Mech 55(2):361–378CrossRefGoogle Scholar
  53. 53.
    Yoneyama S, Kikuta H, Kitagawa A, Kitamura K (2006) Lens distortion correction for digital image correlation by measuring rigid body displacement. Opt Eng 45(2):023602–023602–9CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2016

Authors and Affiliations

  1. 1.Clermont UniversitéUniversité Blaise Pascal, Institut Pascal, UMR CNRS 6602Clermont-FerrandFrance
  2. 2.Laboratoire Lorrain de Recherche en Informatique et ses Applications, UMR CNRS 7503Université de Lorraine, CNRS, INRIA projet Magrit, Campus ScientifiqueVandoeuvre-lès-NancyFrance

Personalised recommendations