Experimental Mechanics

, Volume 56, Issue 5, pp 845–860 | Cite as

Hybrid Stereocorrelation Using Infrared and Visible Light Cameras

  • A. Charbal
  • J. E. Dufour
  • F. Hild
  • M. Poncelet
  • L. Vincent
  • S. Roux
Article

Abstract

3D kinematic fields are measured using an original stereovision system composed of one infrared (IR) and one visible light camera. Global stereocorrelation (SC) is proposed to register pictures shot by both imaging systems. The stereo rig is calibrated by using a NURBS representation of the 3D target. The projection matrices are determined by an integrated approach. The effect of gray level and distortion corrections is assessed on the projection matrices. SC is performed once the matrices are calibrated to measure 3D displacements. Amplitudes varying from 0 to 800 μm are well captured for in-plane and out-of-plane motions. It is shown that when known rigid body translations are applied to the target, the calibration can be improved when its actual metrology is approximate. Applications are shown for two different setups for which the resolution of the IR camera has been modified.

Keywords

Calibration Displacement Resolution Stereocorrelation 

References

  1. 1.
    Amiable A, Chapuliot S, Contentinescu S, Fissolo A (2006) A computational lifetime prediction for a thermal shock experiment, part I: thermomechanical modeling and lifetime prediction. Fatigue Fract Eng Mater Struct 29:209–217CrossRefGoogle Scholar
  2. 2.
    Fissolo A, Amiable S, Ancelet O, Mermaz F, Stelmaszyk JM, Constantinescu A, Robertson C, Vincent L, Maillot V, Bouchet F (2009) Crack initiation under thermal fatigue: an overview of CEA experience. Part I: thermal fatigue appears to be more damaging than uniaxial isothermal fatigue. Int J Fatigue 31(3):587–600CrossRefGoogle Scholar
  3. 3.
    Fissolo A, Gourdin C, Ancelet O, Amiable S, Demassieux A, Chapuliot S, Haddar N, Mermaz F, Stelmaszyk JM, Constantinescu A, Vincent L, Maillot V (2009) Crack initiation under thermal fatigue: an overview of CEA experience: part II (of II): application of various criteria to biaxial thermal fatigue tests and a first proposal to improve the estimation of the thermal fatigue damage. Int J Fatigue 31(7):1196–1210CrossRefGoogle Scholar
  4. 4.
    Vincent L, Poncelet M, Roux S, Hild F, Farcage D (2013) Experimental facility for high cycle thermal fatigue tests using laser shocks. Fatigue Des 2013 Int Conf Proc 66:669–675Google Scholar
  5. 5.
    Esnoul C, Vincent L, Poncelet M, Hild F, Roux S (2013) On the use of thermal and kinematic fields to identify strain amplitudes in cyclic laser pulses on AISI 304L strainless steel. Presented at the Photomechanics, Montpellier (France)Google Scholar
  6. 6.
    Charbal A, Vincent L, Hild F, Poncelet M, Dufour J-E, Roux S, Farcage D (2015) Characterization of temperature and strain fields during cyclic laser shocks. Quant Infrared Thermogr J. doi: 10.1080/17686733.2015.1077544 Google Scholar
  7. 7.
    Sutton MA, Orteu J-J, Schreier HW (2009) Image correlation for shape, motion and deformation measurements. SpringerGoogle Scholar
  8. 8.
    Orteu J-J (2009) 3-D computer vision in experimental mechanics. Opt Meas 47(3–4):282–291Google Scholar
  9. 9.
    Hild F, Roux S (2012) Digital image correlation. In: Rastogi P, Hack E (eds) Optical methods for solid mechanics : a full-field approach. Wiley-VCH, BerlinGoogle Scholar
  10. 10.
    Prakash S, Lee PY, Robles-Kelly A (2007) Stereo techniques for 3D mapping of object surface temperatures. Quant Infrared Thermogr J 4(1):63–84CrossRefGoogle Scholar
  11. 11.
    Rangel J, Soldan S, Kroll A (2014) 3D thermal imaging: fusion of thermography and depth cameras. Presented at the 12th international conference on quantitative infrared thermography. BordeauxGoogle Scholar
  12. 12.
    Gaussorgues G (1999) La thermographie infrarouge, 4th ed. TEC&DOCGoogle Scholar
  13. 13.
    Orteu J-J, Rotrou Y, Sentenac T, Robert L (2008) An innovative method for 3-D shape, strain and temperature full-field measurement using a single type of camera: principle and preliminary results. Exp Mech 48(2):163–179CrossRefGoogle Scholar
  14. 14.
    Chrysochoos A, Martin G (1989) Tensile test microcalorimetry for thermomechanical behaviour law analysis. Mater Sci Eng A 108:25–32CrossRefGoogle Scholar
  15. 15.
    Favier D, Louche H, Schlosser P, Orgéas L, Vacher P, Debove L (2007) Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti–50.8 at.% Ni thin tube under tension. Investigation via temperature and strain fields measurements. Acta Mater 55(16):5310–5322CrossRefGoogle Scholar
  16. 16.
    Schlosser P, Louche H, Favier D, Orgéas L (2007) Image processing to estimate the heat sources related to phase transformations during tensile tests of NiTi tubes. Strain 43(3):260–271CrossRefGoogle Scholar
  17. 17.
    Chrysochoos A, Berthel B, Latourte F, Galtier A, Pagano S, Wattrisse B (2008) Local energy analysis of high-cycle fatigue using digital image correlation and infrared thermography. J Strain Anal Eng Des 43(6):411–422CrossRefGoogle Scholar
  18. 18.
    Chrysochoos A (2012) Thermomechanical analysis of the cyclic behavior of materials. IUTAM Symp Full-Field Meas Identif Solid Mech 4:15–26Google Scholar
  19. 19.
    Bodelot L, Sabatier L, Charkaluk E, Dufrénoy P (2009) Experimental setup for fully coupled kinematic and thermal measurements at the microstructure scale of an AISI 316 L steel. Mater Sci Eng A 501(1–2):52–60CrossRefGoogle Scholar
  20. 20.
    Bodelot L, Charkaluk E, Sabatier L, Dufrénoy P (2011) Experimental study of heterogeneities in strain and temperature fields at the microstructural level of polycrystalline metals through fully-coupled full-field measurements by Digital Image Correlation and Infrared Thermography. Mech Mater 43(11):654–670CrossRefGoogle Scholar
  21. 21.
    Seghir R, Charkaluk E, Dufrénoy P, Bodelot L (2010) Thermomechanical couplings in crystalline plasticity under fatigue loading. Fatigue 2010 2(1):1155–1164Google Scholar
  22. 22.
    Seghir R, Bodelot L, Charkaluk E, Dufrénoy P (2012) Numerical and experimental estimation of thermomechanical fields heterogeneity at the grain scale of 316 L stainless steel. Comput Mater Sci 53(1):464–473CrossRefGoogle Scholar
  23. 23.
    Utz S, Soppa E, Christopher K, Schuler X, Silcher H (2014) Thermal and mechanical fatigue loading - Mechanisms of crack initiation and crack growth. Presented at the proceedings of the ASME 2014 pressure vessels & piping conference, PVP2014, Anaheim, California, USA. p. 10Google Scholar
  24. 24.
    Pottier T, Moutrille M-P, Le Cam J-B, Balandraud X, Grédiac M (2009) Study on the use of motion compensation techniques to determine heat sources. Application to large deformations on cracked rubber specimens. Exp Mech 49(4):561–574CrossRefGoogle Scholar
  25. 25.
    Maynadier A, Poncelet M, Lavernhe-Taillard K, Roux S (2012) One-shot measurement of thermal and kinematic fields: InfraRed Image Correlation (IRIC). Exp Mech 52(3):241–255CrossRefGoogle Scholar
  26. 26.
    Maynadier A, Poncelet M, Lavernhe-Taillard K, Roux S (213) One-shot thermal and kinematic field measurements: Infra-Red Image Correlation. In T. Proulx (Ed), Application of imaging techniques to mechanics of materials and structures, volume 4. Springer New York, 2013, pp. 243–250Google Scholar
  27. 27.
    Besnard G, Lagrange J-M, Hild F, Roux S, Voltz C (2010) Characterization of necking phenomena in high-speed experiments by using a single camera. EURASIP J Image Video Process 2010(1)Google Scholar
  28. 28.
    Szeliski R (2010) Computer vision: algorithms and applications. SpringerGoogle Scholar
  29. 29.
    Dufour J-E, Beaubier B, Hild F, Roux S (2015) CAD-based displacement measurements with stereo-DIC: principle and first validations. Exp Mech 55(9):1657–1668CrossRefGoogle Scholar
  30. 30.
    Piegl L, Tiller W (1997) The NURBS book, 2nd ed. SpringerGoogle Scholar
  31. 31.
    Beaubier B, Dufour J-E, Hild F, Roux S, Lavernhe S, Lavernhe-Taillard K (2014) CAD-based calibration and shape measurement with stereoDIC. Exp Mech 54(3):329–341CrossRefGoogle Scholar
  32. 32.
    Brown DC (1966) Decentering distortion of lenses. Photogramm Eng 32:444–462Google Scholar
  33. 33.
    Brown DC (1971) Close-range camera calibration. Photogramm Eng 37:855–866Google Scholar
  34. 34.
    Faugueras OD, Toscani G (1989) The calibration problem for stereoscopic vision. In: Casals A (ed) Sensor devices and systems for robotics, vol 52. Springer Berlin, Heidelberg, pp 195–213CrossRefGoogle Scholar
  35. 35.
    Tsai RY (1987) Versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the shelf TV cameras and lenses. 323–344Google Scholar
  36. 36.
    Fraser CS (1997) Digital camera self-calibration. ISPRS J Photogramm Remote Sens 52(4):149–159CrossRefGoogle Scholar
  37. 37.
    Fraser CS (1998) Automated processes in digital photogrammetric calibration, orientation, and triangulation. Digit Signal Process 8(4):277–283MathSciNetCrossRefGoogle Scholar
  38. 38.
    Salvi J, Armangué X, Batlle J (2002) A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recogn 35(7):1617–1635CrossRefMATHGoogle Scholar
  39. 39.
    Dufour J-E, Hild F, Roux S (2014) Integrated digital image correlation for the evaluation and correction of optical distortions. Opt Lasers Eng 56:121–133CrossRefGoogle Scholar
  40. 40.
    Charbal A, Dufour J-E, Guery A, Hild F, Roux S, Vincent L, Poncelet M (2016) Integrated digital image correlation considering gray level and blur variations: application to distortion measurements of IR camera. Opt Lasers Eng 78:75–85CrossRefGoogle Scholar
  41. 41.
    Crammond G, Boyd SW, Dulieu-Barton JM (2013) Speckle pattern quality assessment for digital image correlation. Opt Lasers Eng 51(12):1368–1378CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2016

Authors and Affiliations

  • A. Charbal
    • 1
    • 2
  • J. E. Dufour
    • 1
  • F. Hild
    • 1
  • M. Poncelet
    • 1
  • L. Vincent
    • 2
  • S. Roux
    • 1
  1. 1.LMT, ENS Cachan / CNRS / Univ. Paris SaclayCachan CedexFrance
  2. 2.CEA, DEN, DMN, SRMAGif sur Yvette CedexFrance

Personalised recommendations