Experimental Mechanics

, Volume 55, Issue 5, pp 903–915 | Cite as

Simultaneous Measurement of Elastic Properties and Friction Characteristics of Nanowires Using Atomic Force Microscopy

  • D. K. Tran
  • K.-H. ChungEmail author


Understanding of the mechanical properties and friction characteristics of nanowires (NW) with a one-dimensional structure is of great importance for the reliability of their applications involving mechanical interactions, such as contact and relative motion during operation. In this work, the lateral manipulation of a SiO NW with a fixed end and a free end on Si (100) substrate was performed using atomic force microscopy (AFM). Considering an AFM tip-NW-substrate contact system, a model based on the beam theory was proposed to simultaneously obtain both the elastic modulus and the friction characteristics of NWs. The results showed that the elastic moduli of the SiO NWs determined from the lateral manipulation are generally similar to those determined from CR-AFM, in the range of the reported values of SiO NWs. The friction per unit length of the SiO NW slid against Si (100) varied from 0.15 N/m to 0.68 N/m. Furthermore, the length dependence of friction was not clearly observed, which suggests that contacting asperities at the nano-scale may not increase significantly as the length of the NW increases.


Lateral bending Lateral force microscopy Nano-manipulation Nanowire 



This work was supported by the 2013 Research Fund of University of Ulsan.


  1. 1.
    Duan X, Niu C, Sahi V, Chen J, Parce JW, Empedocles S, Goldman JL (2003) High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425:274–278CrossRefGoogle Scholar
  2. 2.
    Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM (2003) High performance silicon nanowire field effect transistors. Nano Lett 3:149–152CrossRefGoogle Scholar
  3. 3.
    Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292CrossRefGoogle Scholar
  4. 4.
    Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotech 23:1294–1301CrossRefGoogle Scholar
  5. 5.
    Feng XL, He R, Yang P, Roukes ML (2007) Very high frequency silicon nanowire electromechanical resonators. Nano Lett 7:1953–1959CrossRefGoogle Scholar
  6. 6.
    Huang Y, Duan X, Lieber C (2005) Nanowires for integrated multicolor nanophotonics. Small 1:142–147CrossRefGoogle Scholar
  7. 7.
    Peng K, Xu Y, Wu Y, Yan Y, Lee S, Zhu J (2005) Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1:1062–1067CrossRefGoogle Scholar
  8. 8.
    Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4:525–529CrossRefGoogle Scholar
  9. 9.
    Paulo AS, Bokor J, Howe RT, He R, Yang P, Gao D, Carraro C, Maboudian R (2005) Mechanical elasticity of single and double clamped silicon nanobeams fabricated by the vapor–liquid-solid method. Appl Phys Lett 87:053111CrossRefGoogle Scholar
  10. 10.
    Ni H, Li X, Gao H (2006) Elastic modulus of amorphous SiO2 nanowires. Appl Phys Lett 88:043108Google Scholar
  11. 11.
    Ngo LT, Almécija D, Sader JE, Daly B, Petkov N, Holmes JD, Erts D, Boland JJ (2006) Ultimate-strength germanium nanowires. Nano Lett 6:2964–2968CrossRefGoogle Scholar
  12. 12.
    Song J, Wang X, Riedo E, Wang ZL (2005) Elastic property of vertically aligned nanowires. Nano Lett 5:1954–1958CrossRefGoogle Scholar
  13. 13.
    Hoffmann S, Utke I, Moser B, Michler J, Christiansen SH, Schmidt V, Senz S, Werner P, Gösele U, Ballif C (2006) Measurement of the bending strength of vapor–liquid-solid grown silicon nanowires. Nano Lett 6:622–625CrossRefGoogle Scholar
  14. 14.
    Rabe U, Janser K, Arnold W (1996) Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment. Rev Sci Instrum 67:3281–3293Google Scholar
  15. 15.
    Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRefGoogle Scholar
  16. 16.
    Stan G, Ciobanu CV, Parthangal PM, Cook RF (2007) Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett 7:3691–3697CrossRefGoogle Scholar
  17. 17.
    Stan G, Krylyuk S, Davydov AV, Cook RF (2010) Compressive stress effect on the radial elastic modulus of oxidized Si nanowires. Nano Lett 10:2031–2037CrossRefGoogle Scholar
  18. 18.
    Killgore JP, Geiss RH, Hurley DC (2011) Continuous measurement of atomic force microscope Tip wear by contact resonance force microscopy. Small 7:1018–1022CrossRefGoogle Scholar
  19. 19.
    Stan G, Krylyuk S, Davydov AV, Levin I, Cook RF (2012) Ultimate bending strength of Si nanowires. Nano Lett 12:2599–2604CrossRefGoogle Scholar
  20. 20.
    Namazu T, Isono Y, Tanaka T (2000) Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J Microelectromech Syst 9:450–459CrossRefGoogle Scholar
  21. 21.
    Zhu Y, Xu F, Qin Q, Fung WY, Lu W (2009) Mechanical properties of vapor–liquid-solid synthesized silicon nanowires. Nano Lett 9:3934–3939CrossRefGoogle Scholar
  22. 22.
    Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139CrossRefGoogle Scholar
  23. 23.
    Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:165410CrossRefGoogle Scholar
  24. 24.
    Chen C, Shi Y, Zhang Y, Zhu J, Yan Y (2006) Size dependence of Young’s modulus in ZnO nanowires. Phys Rev Lett 96:075505CrossRefGoogle Scholar
  25. 25.
    He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8:1798–1802CrossRefGoogle Scholar
  26. 26.
    Yun G, Park H (2009) Surface stress effects on the bending properties of fcc metal nanowires. Phys Rev B 79:195421CrossRefGoogle Scholar
  27. 27.
    Bordag M, Ribayrol A, Conache G, Fröberg L, Gray S, Samuelson L, Montelius L, Pettersson H (2007) Shear stress measurements on InAs nanowires by AFM manipulation. Small 3:1398–1401CrossRefGoogle Scholar
  28. 28.
    Conache G, Gray SM, Ribayrol A, Fröberg LE, Samuelson L, Pettersson H, Montelius L (2009) Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. Small 5:203–207CrossRefGoogle Scholar
  29. 29.
    Qin Q, Zhu Y (2011) Static friction between silicon nanowires and elastomeric substrates. ACS Nano 5:7404–7410CrossRefGoogle Scholar
  30. 30.
    Polyakov B, Dorogin LM, Vlassov S, Kink I, Lohmus A, Romanov AE, Lohmus R (2011) Real-time measurements of sliding friction and elastic properties of ZnO nanowires inside a scanning electron microscope. Solid State Commun 151:1244–1247CrossRefGoogle Scholar
  31. 31.
    Polyakov B, Dorogin LM, Lohmus A, Romanov AE, Lohmus R (2012) In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope. Appl Surf Sci 258:3227–3231CrossRefGoogle Scholar
  32. 32.
    Kim H, Kang KH, Kim D (2013) Sliding and rolling frictional behavior of a single ZnO nanowire during manipulation with an AFM. Nanoscale 5:6081–6087CrossRefGoogle Scholar
  33. 33.
    Larsen T, Moloni K, Flack F, Eriksson MA, Lagally MG, Black CT (2002) Comparison of wear characteristics of etched-silicon and carbon nanotube atomic-force microscopy probes. Appl Phys Lett. doi: 10.1063/1.1452782 Google Scholar
  34. 34.
    Chung K, Kim H, Lin L, Kim D (2008) Tribological characteristics of ZnO nanowires investigated by atomic force microscope. Appl Phys A 92:267–274CrossRefGoogle Scholar
  35. 35.
    Bhushan B (1999) Principles and applications of tribology. John Wiley & Sons, IncGoogle Scholar
  36. 36.
    Carpick RW, Salmeron M (1997) Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem Rev 97:1163–1194CrossRefGoogle Scholar
  37. 37.
    Mo Y, Turner KT, Szlufarska I (2009) Friction laws at the nanoscale. Nature 457:1116–1119CrossRefGoogle Scholar
  38. 38.
    Varenberg M, Etsion I, Halperin G (2003) An improved wedge calibration method for lateral force in atomic force microscopy. Rev Sci Instrum 74:3362–3367CrossRefGoogle Scholar
  39. 39.
    Chung KH, Pratt JR, Reitsma MG (2010) Lateral force calibration: accurate procedures for colloidal probe friction measurements in atomic force microscopy. Langmuir 26:1386–1394CrossRefGoogle Scholar
  40. 40.
    Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873CrossRefGoogle Scholar
  41. 41.
    Cain RG, Reitsma MG, Biggs S, Page NW (2001) Quantitative comparison of three calibration techniques for the lateral force microscope. Rev Sci Instrum. doi: 10.1063/1.1386631 Google Scholar
  42. 42.
    Villarrubia JS (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J Res Natl Inst Stand Technol 102:425–454CrossRefGoogle Scholar
  43. 43.
    Polyakov B, Dorogin LM, Vlassov S, Kink I, Romanov AE, Lohmus R (2012) Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope. Micron 43:1140–1146CrossRefGoogle Scholar
  44. 44.
    Dorogin LM, Polyakov B, Petruhins A, Vlassov S, Lõhmus R, Kink I, Romanov AE (2012) Modeling of kinetic and static friction between an elastically bent nanowire and a flat surface. J Mater Res 27:580–585CrossRefGoogle Scholar
  45. 45.
    Carpick RW, Ogletree DF, Salmeron M (1997) Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl Phys Lett 70:1548–1550CrossRefGoogle Scholar
  46. 46.
    Lantz MA, O’Shea SJ, Hoole ACF, Welland ME (1997) Lateral stiffness of the tip and tip-sample contact in frictional force microscopy. Appl Phys Lett. doi: 10.1063/1.118476 zbMATHGoogle Scholar
  47. 47.
    Chung KH, Lee YH, Kim DE (2005) Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip. Ultramicroscopy 102:161–171CrossRefGoogle Scholar
  48. 48.
    Chung KH (2014) Wear characteristics of atomic force microscopy tips: a reivew. Int J Precis Eng Manuf 15:2219–2230CrossRefGoogle Scholar
  49. 49.
    Conache G, Gray SM, Ribayrol A, Froberg LE, Samuelson L, Montelius L, Pettersson H (2010) Comparative friction measurements of InAs nanowires on three substrates. J Appl Phys 108:094307CrossRefGoogle Scholar
  50. 50.
    Chung K, Lee Y, Kim H, Kim D (2013) Fundamental investigation of the wear progression of silicon atomic force microscope probes. Tribol Lett 52:315–325CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2015

Authors and Affiliations

  1. 1.School of Mechanical EngineeringUniversity of UlsanUlsanSouth Korea

Personalised recommendations