Advertisement

Experimental Mechanics

, Volume 55, Issue 5, pp 917–934 | Cite as

Applying a Full-Field Measurement Technique to Characterize the Mechanical Response of a Sunflower-Based Biocomposite

  • Shengnan Sun
  • Michel GrédiacEmail author
  • Evelyne Toussaint
  • Jean-Denis Mathias
  • Narimane Mati-Baouche
Article

Abstract

This work is part of a project aimed at developing a new biocomposite material that can be used for thermal insulation purposes. This material is mainly composed of sunflower stem chips. A chitosan-based biomatrix is used as binder between them. We focus here only on the mechanical response of this biocomposite. The goal is to investigate experimentally the link between its macroscopic response and phenomena which occur at the scale of the constituents, namely the bark and pith chips. The grid method, which is one of the full-field measurement systems employed in experimental mechanics to measure displacement and strain fields, is employed because of the very heterogeneous nature of this material. This heterogeneity is not only due to the contrast in rigidity between bark and pith, but also to the presence of voids within the material. These voids, as well as the presence of pith, lead us to develop and employ a specific marking procedure for the specimen surface under investigation. Two values for the mass percent fraction of chitosan are investigated, to observe the influence of this parameter on the global stiffness of the material and on local phenomena that occur in its bulk. The full-field measurement technique employed here leads us to detect and quantify significant heterogeneities in the strain fields, which are closely related to the material heterogeneities themselves.

Keywords

Biocomposite Biomatrix Chitosan Composite Displacement and strain measurements Grid method Sunflower 

Notes

Acknowledgments

The authors would like to thank the French National Research Agency (ANR), Céréales Vallée, and ViaMéca for their financial support (ANR-10-ECOT-004 Grant).

References

  1. 1.
    Witz JF, Roux S, Hild F, Reunier JB (2008) Mechanical properties of crimped mineral wools, Identification from digital image correlation. J Eng Mater Technol 130(12):1–7Google Scholar
  2. 2.
    Hild F, Maire E, Roux S, Witz JF (2009) Three-dimensional analysis of a compression test on stone wool. Acta Mater 57(12):3310–3320CrossRefGoogle Scholar
  3. 3.
    Roma LC, Martello LS, Savastano H (2008) Evaluation of mechanical, physical and thermal performance of cement-based tiles reinforced with vegetable fibers. Constr Build Mater 22(1):668–674CrossRefGoogle Scholar
  4. 4.
    Ortiz O, Castells F, Sonnemann G (2009) Sustainability in the construction industry: A review of recent developments based on lca. Constr Build Mater 23(1):28–39CrossRefGoogle Scholar
  5. 5.
    Korjenic A, Petranek V, Zach J, Hroudova J (2011) Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy Build 43:2518–2523CrossRefGoogle Scholar
  6. 6.
    Hajj NE, Dheilly RM, Aboura Z, Benzeggagh M, Queneudec M (2011) Development of thermal insulating and sound absorbing agro-sourced materials from auto linked flax-tows. Ind Crop Prod 34:921–928CrossRefGoogle Scholar
  7. 7.
    Panyakaew S, Fotios S (2011) New thermal insulation boards made from coconut husk and bagasse. Energy Build 43:1732–1739CrossRefGoogle Scholar
  8. 8.
    Bentchikou M, Guidoum A, Scrivener K, Silhadi K, Hanini S (2012) Effect of recycled cellulose fibres on the properties of lightweight cement composite matrix. Constr Build Mater 34(1):451–456CrossRefGoogle Scholar
  9. 9.
    Chikhi M, Agoudjil B, Boudenne A, Gherabli A (2013) Experimental investigation of new biocomposite with low cost for thermal insulation. Energy Build 66(1):267–273CrossRefGoogle Scholar
  10. 10.
    Benfratello S, Capitano C, Peri G, Rizzo G, Scaccianoce G, Sorrentino G (2013) Thermal and structural properties of a hemp-lime biocomposite. Constr Build Mater 48:745–754CrossRefGoogle Scholar
  11. 11.
    Sun S, Mathias J-D, Toussaint E, Grédiac M (2013) Hygromechanical characterization of sunfower stems. Ind Crop Prod 46:50–59CrossRefGoogle Scholar
  12. 12.
    Sun S, Mathias J-D, Toussaint E, Grédiac M (2014) Characterizing the variance of mechanical properties of sunflower bark for biocomposite applications. Bioresources 9(1):922–937Google Scholar
  13. 13.
    Pennec F, Alzina A, Tessier-Doyen N, Nait-Ali B, Mati-Baouche N, De Baynast H, Smith D.S (2013) A combined finite-discrete element method for calculating the effective thermal conductivity of bio-aggregates based materials. Int J Heat Mass Transfer 60:274–283CrossRefGoogle Scholar
  14. 14.
    Patel AK, Michaud P, Petit E, De Baynast H, Grédiac M, Mathias J-D (2013) Development of a chitosan-based adhesive. application to wood bonding. Journal of Applied Polymer Science, Wiley 127(6):5014–5021Google Scholar
  15. 15.
    Mati-Baouche N, De Baynast H, Sun S, Lebert A, Sacristan Lopez-Mingo CJ, Leclaire P, Michaud P (2014) Mechanical, thermal and acoustical characterizations of a insulating bio-based composite made from sunflower stalks particles and chitosan, Industrial Crops and Products. AcceptedGoogle Scholar
  16. 16.
    4108-10 DIN (2008) Anwendungsbezogene Anforderungen an Wrmedämmstoffe-Werkmässig hergestellte Wärmedmmstoffe, AusgabeGoogle Scholar
  17. 17.
    Patel AK, Michaud P, De Baynast H, Grédiac M, Mathias J.-D (2013) Preparation of chitosan-based adhesives and assessment of their mechanical properties. Journal of Applied Polymer Science, Wiley 127(5):3869–3876Google Scholar
  18. 18.
    Patel AK, De Baynast H, Mathias JD, Grédiac M, Michaud P Adhesive Composition Including deacetylated Chitosan. 2013. United States Patent Application 20130143041Google Scholar
  19. 19.
    FAOSTAT. Fao statistics division 2012: World sunflower seed area harvested. http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/F
  20. 20.
    Yan ZL, Wang H, Lau KT, Pather S, Zhang JC, Lin G, Ding Y (2013) Reinforcement of polypropylene with hemp fibres. Compos Part B: Eng 46:221–226CrossRefGoogle Scholar
  21. 21.
    Andersons J, Joffe R (2009) Estimation of the tensile strength of an oriented flax fiber-reinforced polymer composite. Compos Part A: Appl Sci Manuf 42(9):1229–1235CrossRefGoogle Scholar
  22. 22.
    Hautala M, Pasila A, Pirila J (2004) Use of hemp and flax in composite manufacture: a search for new production methods. Compos Part A: Appl Sci Manuf 35(1):11–16CrossRefGoogle Scholar
  23. 23.
    Mathias J-D, Alzina Grédiac A, Michaud P, Roux P, De Baynast H, Delattre C, Dumoulin N, Faure T, Larrey-Lassalle P, Mati-Baouche N, Pennec F, Sun S, Tessier-Doyen N, Toussaint E, Wei W (2014) Valorising sunflower stems as natural fibres for biocomposite applications: an environmental and socio-economic opportunity. SubmittedGoogle Scholar
  24. 24.
    Mati-Baouche N, De Baynast H, Vial C, Audonnet F, Sun S, Petit E, Pennec F, Prevot V, Michaud P (2014) Physico-chemical, thermal and mechanical characterizations of solubilized and solid state chitosans. SubmittedGoogle Scholar
  25. 25.
    Wu LQ, Eembree H, Balgley B, Smith P, Payne G (2002) Utilizing renewable resources to create functional polymers: chitosan-based associative thickener. Environ Sci Technol 36:3446–3454CrossRefGoogle Scholar
  26. 26.
    Salome: the Open Source Integration Plateform for Numerical Simulation. http://www.salome-platform.org/
  27. 27.
  28. 28.
    Abdou A, Boudaiwi I (2013) The variation of thermal conductivity of fibrous insulation materials under different levels of moisture content. Constr Build Mater 43:533–544CrossRefGoogle Scholar
  29. 29.
    Badulescu C, Grédiac M, Haddadi H, Mathias JD, Balandraud X, Tran HS (2011) Applying the grid method and infrared thermography to investigate plastic deformation in aluminium multicrystal. Mech Mater 43(11):36–53CrossRefGoogle Scholar
  30. 30.
    Delpueyo D, Grédiac M, Balandraud X, Badulescu C (2012) Investigation of martensitic microstructures in a monocrystalline Cu-Al-Be shape memory alloy with the grid method and infrared. Mech Mater 45(1):34–51CrossRefGoogle Scholar
  31. 31.
    Chrysochoos A, Surrel Y (2012) Chapter 1. Basics of metrology and introduction to techniques. In: Grédiac M, Hild F (eds) Full-field measurements and identification in solid mechanics, pp 1–29. WileyGoogle Scholar
  32. 32.
    Surrel Y (1994) Moiré and grid methods in optics: a signal-processing approach , Proceedings of the SPIE, volume 2342, pp 213–220Google Scholar
  33. 33.
    Surrel Y (2000) Photomechanics, Topics in Applied Physic 77, chapter Fringe Analysis, pp 55–102. SpringerGoogle Scholar
  34. 34.
    Badulescu C, Grédiac M, Mathias J-D, Roux D (2009) A procedure for accurate one-dimensional strain measurement using the grid method. Experimental Mechanics 49(6):841–854. SpringerCrossRefGoogle Scholar
  35. 35.
    Badulescu C, Grédiac M, Mathias J-D (2009) Investigation of the grid method for accurate in-plane strain measurement. Meas Sci Technol 20:095102. doi: 10.1088/0957-0233/20/9/095102. IOP ScienceCrossRefGoogle Scholar
  36. 36.
    Sur F, Grédiac M (2014) Towards deconvolution to enhance the grid method for in-plane strain measurement. Inverse Problems and Imaging 8(1):259–291CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Grédiac M, Sur F, Badulescu C, Mathias J-D (2013) Using deconvolution to improve the metrological performance of the grid method. Optics and Lasers in Engineering 51:716–734CrossRefGoogle Scholar
  38. 38.
    Kumagai S, Xia S, Notbohm J, Rosakis A, Ravichandran G (2013) Three-dimensional displacement and shape measurement with a diffraction assisted grid method. Strain 49(5). doi: 10.1111/str.12046
  39. 39.
    Avril A, Vautrin S, Surrel Y (2004) Grid method: application to the characterization of cracks. Exp Mech 44(1):37–43CrossRefGoogle Scholar
  40. 40.
    Kim MR, Wisnom J-H, Pierron F, Avril S (2009) Local stiffness reduction in impacted composite plates from full-field measurements. Compos Part A: Appl Sci Manuf 40(12):1961–1974CrossRefGoogle Scholar
  41. 41.
    Ri K, Nanbara S, Saka M, Kobayashi D (2013) Dynamic thermal deformation measurement of large-scale, high-temperature piping in thermal power plants utilizing the sampling moiré method and grating magnets. Exper Mech 53(9):1635–1646CrossRefGoogle Scholar
  42. 42.
    (2011) Sikaflex®-11 FC+ data sheet, #525Google Scholar
  43. 43.
    Piro JL, Grédiac M (2004) Producing and transferring low-spatial-frequency grids for measuring displacement fields with moiré and grid methods. Experimental Techniques 28(4):23–26CrossRefGoogle Scholar
  44. 44.
    Chiang CL (2003) Statistical methods of analysis. World Scientific Pub Co Inc.Google Scholar
  45. 45.
    Matlab 2009 b. the Language of Technical Computing. http://www.mathworks.com/products/matlab/

Copyright information

© Society for Experimental Mechanics 2015

Authors and Affiliations

  • Shengnan Sun
    • 1
  • Michel Grédiac
    • 1
    Email author
  • Evelyne Toussaint
    • 1
  • Jean-Denis Mathias
    • 2
  • Narimane Mati-Baouche
    • 1
  1. 1.Clermont Université, Université Blaise Pascal, Institut PascalClermont-FerrandFrance
  2. 2.IRSTEA, Laboratoire d’Ingénierie pour les Systèmes ComplexesAubièreFrance

Personalised recommendations