Experimental Mechanics

, Volume 56, Issue 5, pp 723–733 | Cite as

A Method to Measure Moisture Induced Swelling Properties of a Single Wood Cell

  • T. Joffre
  • P. Isaksson
  • P. J. J. Dumont
  • S. Rolland du Roscoat
  • S. Sticko
  • L. Orgéas
  • E. K. Gamstedt


Wood cells constitute the main building block in engineered wood-based materials, whose delimiting property frequently is moisture induced swelling. The hygroexpansion properties of wood cells, technically known as fibers, are used as input in predictive micromechanical models aimed for materials design. Values presented in the literature largely depend on the microfibrillar angle, the geometry of the fiber and limiting modelling assumptions. Synchrotron X-ray micro-computed tomography has recently prompted means for detailed measurements of the geometry of unconstrained individual fibers undergoing moisture-induced swelling, which makes it possible to directly quantify the hygroexpansion properties of the cell wall. In addition to a well-defined three-dimensional geometry, the present approach also accounts for large deformations and the fact that cell-wall stiffness depends on the presence of moisture. A mixed numerical-experimental approach is adopted where a finite-element updating scheme is used to simulate the swelling of an earlywood spruce fiber going from the experimental fiber geometry at 47 % relative humidity to the predicted geometry of the fiber in the wet state at 80 % relative humidity at equilibrium conditions. The hygroexpansion coefficients are identified by comparing the predicted and the experimental three-dimensional fiber geometry in the wet state. The obtained values are 0.17 strain per change in relative humidity transverse to the microfibrils in the cell wall, and 0.014 along the microfibrils.


Wood fiber X-ray microtomography Finite element method Hygroexpansion 



The authors wish to thank Dr. Stig L. Bardage at SP Technical Research Institute of Sweden, for the electron microscopy images.

The authors from Uppsala are thankful for the financial support from the Swedish Research council Formas (grant 232-2014-202) and from EU COST Action FP0802 (Experimental and Computational Micro Characterization Techniques in Wood Mechanics).

The authors would also like to gratefully acknowledge the ESRF (beamline ID19) where the microtomography experiments were performed in the framework of the Long Term Project “ma127: Heterogeneous Fibrous Materials”. This research was made possible at LGP2 thanks to the facilities of the TekLiCell platform funded by the Région Rhône-Alpes (ERDF: European Regional Development Fund). LGP2 and 3SR laboratories are parts of the LabEx Tec 21 (Investissements d’Avenir - grant agreement n°ANR-11-LABX-0030) and of the Énergies du Futur and PolyNat Carnot Institutes (Investissements d’Avenir - grant agreements n°ANR-11-CARN-007-01 and ANR-11-CARN-030-01).


  1. 1.
    Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRefGoogle Scholar
  2. 2.
    La Mantia F, Morreale M (2011) Green composites: a brief review. Compos Part A 42:579–588CrossRefGoogle Scholar
  3. 3.
    Mamun AA, Bledzki AK (2013) Micro fibre reinforced PLA and PP composites: Enzyme modification, mechanical and thermal properties. Compos Sci Technol 78:10–17CrossRefGoogle Scholar
  4. 4.
    Dagenais C, Gagnon S, Desjardins R (2013) Performance-based design for mid-rise wood constructions in Canada. In: Cruz PJS (ed) Proceedings of the second international conference on structures and architecture: new concepts, applications and challenges. Taylor and Francis Group, London, pp 140–147CrossRefGoogle Scholar
  5. 5.
    Li Z, He M, Lam F, Li M, Ma R, Ma Z (2013) Finite element modeling and parametric analysis of timber–steel hybrid structures. Struct Des Tall Special Build 23:1045–1063CrossRefGoogle Scholar
  6. 6.
    van de Lindt JW, Pei S, Pryor SE, Shimizu H, Isoda H (2010) Experimental seismic response of a full-scale six-story light-frame wood building. J Struct Eng 136:1262–1272CrossRefGoogle Scholar
  7. 7.
    Cave I (1972) A theory of the shrinkage of wood. Wood Sci Technol 6:284–292CrossRefGoogle Scholar
  8. 8.
    Joffre T, Neagu RC, Bardage SL, Gamstedt EK (2014) Modelling of the hygroelastic behaviour of normal and compression wood tracheids. J Struct Biol 185:89–98CrossRefGoogle Scholar
  9. 9.
    Persson K (2000) Doctoral thesis, micromechanical modelling of wood and fibre properties, division of structural mechanics. Lund Institute of TechnologyGoogle Scholar
  10. 10.
    Wallström L, Lindberg KAH (1999) Measurement of cell wall penetration in wood of water-based chemicals using SEM/EDS and STEM/EDS technique. Wood Sci Technol 33:111–122CrossRefGoogle Scholar
  11. 11.
    Almgren KM, Gamstedt EK, Varna J (2010) Contribution of wood fiber hygroexpansion to moisture induced thickness swelling of composite plates. Polym Compos 31:762–771Google Scholar
  12. 12.
    Barnett J, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79:461–472CrossRefGoogle Scholar
  13. 13.
    Burgert I, Frühmann K, Keckes J, Fratzl P, Stanzl-Tschegg S (2005) Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 2: twisting phenomena. Holzforschung 59:247–251Google Scholar
  14. 14.
    Neagu RC, Gamstedt EK (2007) Modelling of effects of ultrastructural morphology on the hygroelastic properties of wood fibres. J Mater Sci 42:10254–10274CrossRefGoogle Scholar
  15. 15.
    Cave I (1978) Modelling moisture-related mechanical properties of wood part i: properties of the wood constituents. Wood Sci Technol 12:75–86CrossRefGoogle Scholar
  16. 16.
    Hassani MM, Wittel FK, Hering S, Herrmann HJ (2015) Rheological model for wood. Comput Methods Appl Mech Eng 283:1032–1060CrossRefGoogle Scholar
  17. 17.
    Qing H, Mishnaevsky L (2009) Moisture-related mechanical properties of softwood: 3D micromechanical modeling. Comput Mater Sci 46:310–320CrossRefGoogle Scholar
  18. 18.
    Rafsanjani A, Lanvermann C, Niemz P, Carmeliet J, Derome D (2013) Multiscale analysis of free swelling of Norway spruce. Compos Part A 54:70–78CrossRefGoogle Scholar
  19. 19.
    Wang N, Liu W, Lai J (2014) An attempt to model the influence of gradual transition between cell wall layers on cell wall hygroelastic properties. J Mater Sci 49:1984–1993CrossRefGoogle Scholar
  20. 20.
    Yamamoto H, Sassus F, Ninomiya M, Gril J (2001) A model of anisotropic swelling and shrinking process of wood. Wood Sci Technol 35:167–181CrossRefGoogle Scholar
  21. 21.
    Keckes PF, Stanzl-Tschegg S (2005) Properties of chemically and mechanically isolated fibres of spruce (Picea abies wL. x Karst.). Part 2: twisting phenomena. Holzforschung 59:247–251Google Scholar
  22. 22.
    Badel E, Perré P (2001) Using a digital X-ray imaging device to measure the swelling coefficients of a group of wood cells. NDT E Int 34:345–353CrossRefGoogle Scholar
  23. 23.
    Burgert I, Eder M, Gierlinger N, Fratzl P (2007) Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell. Planta 226:981–987CrossRefGoogle Scholar
  24. 24.
    Marklund E, Varna J (2009) Modeling the hygroexpansion of aligned wood fiber composites. Compos Sci Technol 69:1108–1114CrossRefGoogle Scholar
  25. 25.
    Derome D, Griffa M, Koebel M, Carmeliet J (2011) Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. J Struct Biol 173:180–190CrossRefGoogle Scholar
  26. 26.
    Steppe K, Cnudde V, Girard C, Lemeur R, Cnudde J-P, Jacobs P (2004) Use of X-ray computed microtomography for non-invasive determination of wood anatomical characteristics. J Struct Biol 148:11–21CrossRefGoogle Scholar
  27. 27.
    Viguié J, Dumont PJ, Mauret É, Du Roscoat SR, Vacher P, Desloges I, Bloch J-F (2011) Analysis of the hygroexpansion of a lignocellulosic fibrous material by digital correlation of images obtained by X-ray synchrotron microtomography: application to a folding box board. J Mater Sci 46:4756–4769CrossRefGoogle Scholar
  28. 28.
    Antoine C, Nygård P, Gregersen ØW, Holmstad R, Weitkamp T, Rau C (2002) 3D images of paper obtained by phase-contrast X-ray microtomography: image quality and binarisation. Nucl Inst Methods in Phys Res Sect A 490:392–402CrossRefGoogle Scholar
  29. 29.
    Marulier C, Dumont P, Orgéas L, Caillerie D, du Roscoat SR (2012) Towards 3D analysis of pulp fibre networks at the fibre and bond levels. Nord Pulp Pap Res J 27:245–255CrossRefGoogle Scholar
  30. 30.
    Rolland du Roscoat S, Decain M, Thibault X, Geindreau C, Bloch J-F (2007) Estimation of microstructural properties from synchrotron X-ray microtomography and determination of the REV in paper materials. Acta Mater 55:2841–2850CrossRefGoogle Scholar
  31. 31.
    Samuelsen EJ, Gregersen OW, Houen P, Helle T, Raven C, Snigirev A (2001) Three-dimensional imaging of paper by use of synchrotron x-ray microtomography. J Pulp Pap Sci 27:50–53Google Scholar
  32. 32.
    Viguié J, Latil P, Orgéas L, Dumont P, Rolland du Roscoat S, Bloch J-F, Marulier C, Guiraud O (2013) Finding fibres and their contacts within 3D images of disordered fibrous media. Compos Sci Technol 89:202–210CrossRefGoogle Scholar
  33. 33.
    Awal A, Rana M, Sain M (2015) Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites. Mech Mater 80:87–95CrossRefGoogle Scholar
  34. 34.
    Joffre T, Miettinen A, Wernersson EL, Isaksson P, Gamstedt EK (2014) Effects of defects on the tensile strength of short-fibre composite materials. Mech Mater 75:125–134CrossRefGoogle Scholar
  35. 35.
    Rafsanjani A, Stiefel M, Jefimovs K, Mokso R, Derome D, Carmeliet J (2014) Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy. J R Soc Interface 11:20140126CrossRefGoogle Scholar
  36. 36.
    Avril S, Bonnet M, Bretelle A-S, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48:381–402CrossRefGoogle Scholar
  37. 37.
    Gamstedt EK, Bader TK, de Borst K (2013) Mixed numerical–experimental methods in wood micromechanics. Wood Sci Technol 47:183–202CrossRefGoogle Scholar
  38. 38.
    Hill CA, Norton AJ, Newman G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514CrossRefGoogle Scholar
  39. 39.
    Patera A, Derome D, Griffa M, Carmeliet J (2013) Hysteresis in swelling and in sorption of wood tissue. J Struct Biol 182:226–234CrossRefGoogle Scholar
  40. 40.
    Harauz G, van Heel M (1986) Exact filters for general geometry three dimensional reconstruction. Proc IEEE Comput Vis Pattern Recognit Conf 146–156Google Scholar
  41. 41.
    Müller M, Czihak C, Vogl G, Fratzl P, Schober H, Riekel C (1998) Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam small-angle X-ray scattering. Macromolecules 31:3953–3957CrossRefGoogle Scholar
  42. 42.
    Batchelor WJ, Conn AB, Parker IH (1997) Measuring the fibril angle of fibres using confocal microscopy. Appita J 50:377–380Google Scholar
  43. 43.
    Donaldson L (1991) The use of pit apertures as windows to measure microfibril angle in chemical pulp fibers. Wood Fiber Sci 23:290–295Google Scholar
  44. 44.
    Leney L (1981) A technique for measuring fibril angle using polarized light. Wood Fiber Sci 13:13–16Google Scholar
  45. 45.
    Preston R (1934) The organization of the cell wall of the conifer tracheid. Philos Trans R Soc Lond Ser B 224:131–174CrossRefGoogle Scholar
  46. 46.
    Fengel D (1969) The ultrastructure of cellulose from wood. Wood Sci Technol 3:203–217CrossRefGoogle Scholar
  47. 47.
    Vincent L (1994) Morphological area openings and closings for grey-scale images. Proceedings of NATO Shape in Picture Workshop. Springer, Driebergen 197–208Google Scholar
  48. 48.
    Müller M, Burghammer M, Sugiyama J (2006) Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung 60:474–479CrossRefGoogle Scholar
  49. 49.
    Bathe K-J (1996) Finite Element Procedures. Prentice Hall, Englewood CliffsMATHGoogle Scholar
  50. 50.
    Crisfield M, Galvanetto U, Jelenić G (1997) Dynamics of 3-D co-rotational beams. Comput Mech 20:507–519CrossRefMATHGoogle Scholar
  51. 51.
    Zienkiewicz OC, Taylor RL (2000) The finite element method: solid mechanics. Butterworth-HeinemannGoogle Scholar
  52. 52.
    Holzapfel GA (2000) Nonlinear Solid Mechanics. Wiley, ChichesterMATHGoogle Scholar
  53. 53.
    Krenk S (2009) Non-linear modeling and analysis of solids and structures. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  54. 54.
    Ji W, Waas AM, Bazant ZP (2013) On the importance of work-conjugacy and objective stress rates in finite deformation incremental finite element analysis. J Appl Mech 80:041024CrossRefGoogle Scholar
  55. 55.
    Konnerth J, Buksnowitz C, Gindl W, Hofstetter K, Jäger A (2010) Full set of elastic constants of spruce wood cell walls determined by nanoindentation, Proceedings of the International Convention of the Society of Wood Science and Technology and United Nations Economic Commission for Europe—Timber Committee, GenevaGoogle Scholar
  56. 56.
    Cleveland WS, Loader C (1996) Smoothing by local regression: principles and methods, statistical theory and computational aspects of smoothing. Springer 10–49Google Scholar
  57. 57.
    Kajanto I, Niskanen K (1998) Dimensional stability. Teoksessa: Niskanen, K. (ed.), 222–259Google Scholar
  58. 58.
    Joffre T, Wernersson EL, Miettinen A, Luengo Hendriks CL, Gamstedt EK (2013) Swelling of cellulose fibres in composite materials: constraint effects of the surrounding matrix. Compos Sci Technol 74:52–59CrossRefGoogle Scholar
  59. 59.
    Hult E-L, Larsson PT, Iversen T (2000) A comparative CP/MAS 13C-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55CrossRefGoogle Scholar
  60. 60.
    Keylwerth R (1951) Formänderungen in Holzquerschnitten. Eur J Wood Wood Prod 9:253–260CrossRefGoogle Scholar
  61. 61.
    Neagu RC, Gamstedt EK, Lindström, M (2005) Influence of wood-fibre hygroexpansion on the dimensional instability of fibre mats and composites. Compos Part AGoogle Scholar
  62. 62.
    Mazeau K, Rivet A (2008) Wetting the (110) and (100) surfaces of Iβ cellulose studied by molecular dynamics. Biomacromolecules 9:1352–1354Google Scholar
  63. 63.
    Rafsanjani A, Derome D, Wittel FK, Carmeliet J (2012) Computational up-scaling of anisotropic swelling and mechanical behavior of hierarchical cellular materials. Compos Sci Technol 72:744–751CrossRefGoogle Scholar
  64. 64.
    Almgren KM, Gamstedt EK, Berthold F, Lindström M (2009) Moisture uptake and hygroexpansion of wood fiber composite materials with polylactide and polypropylene matrix materials. Polym Compos 30:1809–1816CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2016

Authors and Affiliations

  • T. Joffre
    • 1
  • P. Isaksson
    • 1
  • P. J. J. Dumont
    • 2
    • 3
    • 4
    • 8
  • S. Rolland du Roscoat
    • 5
    • 6
    • 7
  • S. Sticko
    • 1
  • L. Orgéas
    • 5
    • 6
  • E. K. Gamstedt
    • 1
  1. 1.Department of Engineering Sciences, Ångström LaboratoryUppsala UniversityUppsalaSweden
  2. 2.Université Grenoble Alpes, LGP2GrenobleFrance
  3. 3.CNRS, LGP2GrenobleFrance
  4. 4.AgefpiSaint-Martin-d’HèresFrance
  5. 5.Université Grenoble Alpes, 3SR LabGrenobleFrance
  6. 6.CNRS, 3SR LabGrenobleFrance
  7. 7.ESRF, ID 19 Topography and Microtomography GroupGrenoble CedexFrance
  8. 8.Université de Lyon, INSA-Lyon, LaMCoS CNRS UMR5259Villeurbanne CedexFrance

Personalised recommendations