Experimental Mechanics

, Volume 56, Issue 3, pp 493–506 | Cite as

Shear Characterization of Adhesive Layers by Advanced Optical Techniques

  • A. C. C. Leitão
  • R. D. S. G. CampilhoEmail author
  • D. C. Moura


With adhesive bonding, design can be oriented towards lighter structures because of the direct weight savings over fastened or welded joints and also due to the flexibility to joint different materials. Cohesive Zone Models (CZM) are a powerful design tool, although the CZM laws of the adhesive bond in tension and shear are required as input in the models. This work experimentally evaluates the shear fracture toughness (G IIC) and CZM laws of bonded joints for three adhesives with distinct ductility. G IIC was characterized by conventional and the J-integral techniques. Additionally, by the J-integral technique, the precise shape of the cohesive law was defined. For the J-integral, a digital image correlation method is used to estimate the adhesive layer shear displacement at the crack tip (δ s) during the test, coupled to a Matlab® sub-routine for extraction of this parameter automatically. As output of this work, fracture data is provided in shear for each adhesive, showing the marked differences between the three adhesives evaluated. This information enables the subsequent strength prediction of bonded joints under this mode of loading.


Adhesive joint Fracture toughness Cohesive law Experimental testing Digital image correlation 



The authors would like to thank Sika® Portugal for supplying the adhesive.


  1. 1.
    da Silva LFM, Öchsner A, Adams RD (eds) (2011) Handbook of adhesion technology. Springer, HeidelbergGoogle Scholar
  2. 2.
    Klarbring A (1991) Derivation of a model of adhesively bonded joints by the asymptotic expansion method. Int J Eng Sci 29:493–512. doi: 10.1016/0020-7225(91)90090-P CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Campilho RDSG, Banea MD, Neto JABP, da Silva LFM (2013) Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. Int J Adhes Adhes 44:48–56. doi: 10.1016/j.ijadhadh.2013.02.006 CrossRefGoogle Scholar
  4. 4.
    Andersson T, Stigh U (2004) The stress–elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces. Int J Solids Struct 41:413–434. doi: 10.1016/j.ijsolstr.2003.09.039 CrossRefGoogle Scholar
  5. 5.
    Adams R, Comyn J, Wake W (1997) Structural adhesive joints in engineering, 2nd edn. Chapman and Hall, AbingdonGoogle Scholar
  6. 6.
    Ripling E, Mostovoy S, Patrick R (1964) Application of fracture mechanics to adhesive joints. ASTM STP 360:5–19Google Scholar
  7. 7.
    Zhu Y, Liechti KM, Ravi-Chandar K (2009) Direct extraction of rate-dependent traction-separation laws for polyurea/steel interfaces. Int J Solids Struct 46:31–51. doi: 10.1016/j.ijsolstr.2008.08.019 CrossRefGoogle Scholar
  8. 8.
    Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104. doi: 10.1016/0022-5096(60)90013-2 CrossRefGoogle Scholar
  9. 9.
    Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129. doi: 10.1016/s0065-2156(08)70121-2 CrossRefMathSciNetGoogle Scholar
  10. 10.
    Tvergaard V, Hutchinson JW (1993) The influence of plasticity on mixed-mode interface toughness. J Mech Phys Solids 41:1119–1135. doi: 10.1016/0022-5096(93)90057-M CrossRefzbMATHGoogle Scholar
  11. 11.
    de Moura MFSF, Gonçalves JPM, Chousal JAG, Campilho RDSG (2008) Cohesive and continuum mixed-mode damage models applied to the simulation of the mechanical behaviour of bonded joints. Int J Adhes Adhes 28:419–426. doi: 10.1016/j.ijadhadh.2008.04.004 CrossRefGoogle Scholar
  12. 12.
    Campilho RDSG, Banea MD, Neto JABP, da Silva LFM (2012) Modelling of single-lap joints using cohesive zone models: effect of the cohesive parameters on the output of the simulations. J Adhes 88:513–533. doi: 10.1080/00218464.2012.660834 CrossRefGoogle Scholar
  13. 13.
    Lee MJ, Cho TM, Kim WS, Lee BC, Lee JJ (2010) Determination of cohesive parameters for a mixed-mode cohesive zone model. Int J Adhes Adhes 30:322–328. doi: 10.1016/j.ijadhadh.2009.10.005 CrossRefGoogle Scholar
  14. 14.
    de Moura MFSF, Campilho RDSG, Gonçalves JPM (2008) Crack equivalent concept applied to the fracture characterization of bonded joints under pure mode I loading. Compos Sci Technol 68:2224–2230. doi: 10.1016/j.compscitech.2008.04.003 CrossRefGoogle Scholar
  15. 15.
    de Moura MFSF, Campilho RDSG, Gonçalves JPM (2009) Pure mode II fracture characterization of composite bonded joints. Int J Solids Struct 46:1589–1595. doi: 10.1016/j.ijsolstr.2008.12.001 CrossRefzbMATHGoogle Scholar
  16. 16.
    Campilho RDSG, de Moura MFSF, Pinto AMG, Morais JJL, Domingues JJMS (2009) Modelling the tensile fracture behaviour of CFRP scarf repairs. Compos Part B 40:149–157. doi: 10.1016/j.compositesb.2008.10.008 CrossRefGoogle Scholar
  17. 17.
    Flinn BD, Lo CS, Zok FW, Evans AG (1993) Fracture-resistance characteristics of a metal-toughened ceramic. J Am Ceram Soc 76:369–375. doi: 10.1111/j.1151-2916.1993.tb03794.x CrossRefGoogle Scholar
  18. 18.
    Mello AV, Liechti KM (2006) The effect of self-assembled monolayers on interfacial fracture. J Appl Mech 73:860–870. doi: 10.1115/1.1940662 CrossRefzbMATHGoogle Scholar
  19. 19.
    Pandya KC, Williams JG (2000) Measurement of cohesive zone parameters in tough polyethylene. Polym Eng Sci 40:1765–1776. doi: 10.1002/pen.11308 CrossRefGoogle Scholar
  20. 20.
    Campilho RDSG, Moura DC, Gonçalves DJS, da Silva JFMG, Banea MD, da Silva LFM (2013) Fracture toughness determination of adhesive and co-cured joints in natural fibre composites. Compos Part B 50:120–126. doi: 10.1016/j.compositesb.2013.01.025 CrossRefGoogle Scholar
  21. 21.
    Leffler K, Alfredsson KS, Stigh U (2007) Shear behaviour of adhesive layers. Int J Solids Struct 44:530–545. doi: 10.1016/j.ijsolstr.2006.04.036 CrossRefzbMATHGoogle Scholar
  22. 22.
    Ouyang Z, Li G (2009) Nonlinear interface shear fracture of end notched flexure specimens. Int J Solids Struct 46:2659–2668. doi: 10.1016/j.ijsolstr.2009.02.011 CrossRefzbMATHGoogle Scholar
  23. 23.
    Ji G, Ouyang Z, Li G (2011) Effects of bondline thickness on Mode-II interfacial laws of bonded laminated composite plate. Int J Fract 168:197–207. doi: 10.1007/s10704-010-9571-9 CrossRefGoogle Scholar
  24. 24.
    Ji G, Ouyang Z, Li G (2012) Local interface shear fracture of bonded steel joints with various bondline thicknesses. Exp Mech 52:481–491. doi: 10.1007/s11340-011-9507-y CrossRefGoogle Scholar
  25. 25.
    Carlberger T, Stigh U (2010) Influence of layer thickness on cohesive properties of an epoxy-based adhesive—an experimental study. J Adhes 86:816–835. doi: 10.1080/00218464.2010.498718 CrossRefGoogle Scholar
  26. 26.
    Marzi S, Biel A, Stigh U (2011) On experimental methods to investigate the effect of layer thickness on the fracture behavior of adhesively bonded joints. Int J Adhes Adhes 31:840–850. doi: 10.1016/j.ijadhadh.2011.08.004 CrossRefGoogle Scholar
  27. 27.
    Stigh U, Alfredsson K, Biel A (2009) Measurement of cohesive laws and related problems. In: Proceedings of the ASME Int Mech Eng Congress and ExpositionGoogle Scholar
  28. 28.
    Campilho RDSG, Banea MD, Pinto AMG, da Silva LFM, de Jesus AMP (2011) Strength prediction of single- and double-lap joints by standard and extended finite element modelling. Int J Adhes Adhes 31:363–372. doi: 10.1016/j.ijadhadh.2010.09.008 CrossRefGoogle Scholar
  29. 29.
    Faneco TMS (2014) Caraterização das propriedades mecânicas de um adesivo estrutural de alta ductilidade, MSc Thesis, Instituto Superior de Engenharia do Porto, PortugalGoogle Scholar
  30. 30.
    Compston P, Jar PYB, Burchill PJ, Takahashi K (2001) The effect of matrix toughness and loading rate on the mode-II interlaminar fracture toughness of glass-fibre/vinyl-ester composites. Compos Sci Technol 61:321–333. doi: 10.1016/S0266-3538(00)00226-8 CrossRefGoogle Scholar
  31. 31.
    Elmarakbi A (ed) (2014) Advanced composite materials for automotive applications: Structural integrity and crashworthiness. Wiley, HobokenGoogle Scholar
  32. 32.
    Wang Y, Williams JG (1992) Corrections for mode II fracture toughness specimens of composite materials. Compos Sci Technol 43:251–256. doi: 10.1016/0266-3538(92)90096-L CrossRefGoogle Scholar
  33. 33.
    Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386. doi: 10.1115/1.3601206 CrossRefGoogle Scholar
  34. 34.
    Ameli A, Papini M, Schroeder JA, Spelt JK (2010) Fracture R-curve characterization of toughened epoxy adhesives. Eng Fract Mech 77:521–534. doi: 10.1016/j.engfracmech.2009.10.009 CrossRefGoogle Scholar
  35. 35.
    Ji G, Ouyang Z, Li G, Ibekwe S, Pang SS (2010) Effects of adhesive thickness on global and local mode-I interfacial fracture of bonded joints. Int J Solids Struct 47:2445–2458. doi: 10.1016/j.ijsolstr.2010.05.006 CrossRefzbMATHGoogle Scholar
  36. 36.
    Campilho RDSG, Moura DC, Banea MD, da Silva LFM (2014) Adherend thickness effect on the tensile fracture toughness of a structural adhesive using an optical data acquisition method. Int J Adhes Adhes 53:15–22. doi: 10.1016/j.ijadhadh.2014.01.015 CrossRefGoogle Scholar
  37. 37.
    Pelfrene J, Van Dam S, Paepegem V (2015) Numerical analysis of the peel test for characterisation of interfacial debonding in laminated glass. Int J Adhes Adhes 62:146–153. doi: 10.1016/j.ijadhadh.2015.07.010 CrossRefGoogle Scholar
  38. 38.
    Desai CK, Basu S, Parameswaran V (2015) Determination of traction separation law for interfacial failure in adhesive joints at different loading rates. J Adhes. doi: 10.1080/00218464.2015.1046986 zbMATHGoogle Scholar
  39. 39.
    Constante CJ, Campilho RDSG, Moura DC (2015) Tensile fracture characterization of adhesive joints by standard and optical techniques. Eng Fract Mech 136:292–304. doi: 10.1016/j.engfracmech.2015.02.010 CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2015

Authors and Affiliations

  • A. C. C. Leitão
    • 1
  • R. D. S. G. Campilho
    • 1
    Email author
  • D. C. Moura
    • 2
  1. 1.Departamento de Engenharia MecânicaInstituto Superior de Engenharia do Porto, Instituto Politécnico do PortoPortoPortugal
  2. 2.Instituto de Telecomunicações, Departamento de Engenharia Electrotécnica e de Computadores, Faculdade de EngenhariaUniversidade do PortoPortoPortugal

Personalised recommendations