Experimental Mechanics

, Volume 55, Issue 9, pp 1657–1668 | Cite as

CAD-based Displacement Measurements with Stereo-DIC

Principle and First Validations
  • John-Eric Dufour
  • Benoît Beaubier
  • François Hild
  • Stéphane Roux


A new displacement measurement technique is proposed in a stereovision setup, which uses the object of interest as the support of the correlation process. This procedure leads to a global approach to stereocorrelation. The method is presented in its general formulation and is then particularized to the case of non uniform rational B-splines (NURBS). The displacement field is directly measured as a 3D field expressed in a NURBS basis consistent with the existing geometric model. The kinematic measurements are validated against prescribed displacements of a machined Bézier patch. The feasibility in an industrial context is shown with the analysis of 3D displacement fields of a 2- m2 automotive roof panel during a welding operation.


Stereocorrelation DIC Freeform surfaces Displacement Uncertainty 



This work was partly supported by PSA-Peugeot-Citroën, by a grant from Région Île-de-France, and under the PRC Composites, French research project funded by DGAC, involving SAFRAN Group, ONERA and CNRS.


  1. 1.
    Sutton MA, Orteu J-J, Schreier HW (2009) Image correlation for shape, motion and deformation measurements. SpringerGoogle Scholar
  2. 2.
    Sutton MA (2013) Computer vision-based, noncontacting deformation measurements in mechanics: a generational transformation. Appl Mech Rev 65(5)Google Scholar
  3. 3.
    Schreier HW, Garcia D, Sutton MA (2004) Advances in light microscope stereo vision. Exp Mech 44 (3):278–288CrossRefGoogle Scholar
  4. 4.
    Sutton MA, Ke X, Lessner SM, Goldbach M, Yost M, Zhao F, Schreier HW (2008) Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation. J Biomed Mater Res Part A 84A(1):178–190CrossRefGoogle Scholar
  5. 5.
    Zhu T, Sutton MA, Li N, Orteu JJ, Cornille N, Li X, Reynolds AP (2011) Quantitative stereovision in a scanning electron microscope. Exp Mech 51(1):97–109CrossRefGoogle Scholar
  6. 6.
    Kayaalp A, Rao AR, Jain R (1990) Scanning electron microscope-based stereo analysis. Mach Vis Appl 3(4):231–246CrossRefGoogle Scholar
  7. 7.
    Hiep VH, Keriven R, Labatut P, Pons J-P (2009) Towards high-resolution large-scale multi-view stereo. In: IEEE-computer-society conference on computer vision and pattern recognition workshops, pp 1430–1437Google Scholar
  8. 8.
    Vu H-H, Labatut P, Pons J-P, Keriven R (2012) High accuracy and visibility-consistent dense multiview stereo. IEEE Trans Pattern Anal Mach Intell 34(5):889–901CrossRefGoogle Scholar
  9. 9.
    Luo P-F, Chao YJ, Sutton MA (1994) Application of stereo vision to three-dimensional deformation analyses in fracture experiments. Opt Eng 33(3):981–990CrossRefGoogle Scholar
  10. 10.
    Helm JD, McNeill SR, Sutton MA (1996) Improved three-dimensional image correlation for surface displacement measurement. Opt Eng 35(7):1911–1920CrossRefGoogle Scholar
  11. 11.
    Besnard G, Hild F, Lagrange J-M, Martinuzzi P, Roux S (2012) Analysis of necking in high speed experiments by stereocorrelation. Int J Impact Eng 49:179–191CrossRefGoogle Scholar
  12. 12.
    Sutton MA, Yan JH, Tiwari V, Schreier HW, Orteu JJ (2008) The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Opt Lasers Eng 46(10):746–757CrossRefGoogle Scholar
  13. 13.
    Weng J, Cohen P, Herniou M (1992) Camera calibration with distortion models and accuracy evaluation. IEEE Trans Pattern Anal Mach Intell 40(10):965–980CrossRefGoogle Scholar
  14. 14.
    Faugeras O (1993) Three-dimensional computer vision: a geometric viewpoint. MIT Press, CambridgeGoogle Scholar
  15. 15.
    Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22 (11):1330–1334CrossRefGoogle Scholar
  16. 16.
    Seitz SM, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evaluation of multi-view stereo reconstruction algorithms. In: IEEE computer society conference on computer vision and pattern recognition. IEEE, vol 1, pp 519–528Google Scholar
  17. 17.
    Beaubier B, Dufour J-E, Hild F, Roux S, Lavernhe S, Lavernhe-Taillard K (2014) CAD-based calibration and shape measurement with stereo-DIC: principle and application on test and industrial parts. Exp Mech 54(3):329–341CrossRefGoogle Scholar
  18. 18.
    Sutton MA, McNeill SR, Helm JD, Chao YJ (2000) Photomechanics, topics in applied physics, chapter advances in two-dimensional and three-dimensional computer vision. Springer, New YorkGoogle Scholar
  19. 19.
    Dassault Systems. CATIA V5 R19, 2008.
  20. 20.
    Piegl LA, Tiller W (1997) The NURBS book. Monographs in visual communications. Springer, BerlinGoogle Scholar
  21. 21.
    Hild F, Roux S (2012) Digital image correlation. In: Rastogi P, Hack E (eds) Optical methods for solid mechanics. Wiley-VCH, pp 183–228Google Scholar
  22. 22.
    Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140:141–157MATHCrossRefGoogle Scholar
  23. 23.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. WileyGoogle Scholar
  24. 24.
    Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Wiley, New YorkMATHGoogle Scholar
  25. 25.
    Tomičević Z, Hild F, Roux S (2013) Mechanics-aided digital image correlation. J Strain Analysis 48:330–343CrossRefGoogle Scholar
  26. 26.
    Leclerc H, Périé JN, Roux S, Hild F (2011) Voxel-scale digital volume correlation. Exp Mech 51 (4):479–490CrossRefGoogle Scholar
  27. 27.
    Gras R, Leclerc H, Hild F, Roux S, Schneider J (2015) Identification of a set of macroscopic elastic parameters in a 3D woven composite: uncertainty analysis and regularization. Int J Solids Struct 55:2–16CrossRefGoogle Scholar
  28. 28.
    Mathieu F, Leclerc H, Hild F, Roux S (2015) Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC. Exp Mech 55(1):105–119CrossRefGoogle Scholar
  29. 29.
    Dufour J-E, Leclercq S, Schneider J, Hild F, Roux S (2015) Isogeometric-based 3D measurements with StereoDIC: Application to Complex Shapes. To be submittedGoogle Scholar
  30. 30.
    Dufour J-E, Beaubier B, Hild F, Roux S Displacement measurements using CAD-based stereo-correlation with meshes. In: 16th International conference on experimental mechanics. European Society for Experimental MechanicsGoogle Scholar
  31. 31.
    Dubreuil L, Dufour J-E, Quinsat Y, Hild F (2015) FE-based shape measurements with stereo-DIC: principle and first results. To be submittedGoogle Scholar
  32. 32.
    Dufour J-E, Hild F, Roux S (2014) Integrated digital image correlation for the evaluation and correction of optical distortions. Opt Lasers Eng 56:121–133CrossRefGoogle Scholar
  33. 33.
    Yang C, Medioni G (1992) Object modelling by registration of multiple range images. Image Vis Comput 10(3):145–155CrossRefGoogle Scholar
  34. 34.
    Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503–1519CrossRefGoogle Scholar
  35. 35.
    Leclerc H, Périé J-N, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical properties.. In: Computer vision/computer graphics collaboration techniques, vol 5496. Springer, Berlin, pp 161–171Google Scholar
  36. 36.
    Leclerc H, Périé J-N, Hild F, Roux S (2012) Digital volume correlation: what are the limits to the spatial resolution? Mech Ind 13:361–371CrossRefGoogle Scholar
  37. 37.
    Dufour J-E, Beaubier B, Hild F, Roux S (2015) Shape, Displacement and Mechanical Properties from Isogeometric Multiview Stereocorrelation. J Strain Analysis for Engineering Design. doi: 10.1177/0309324715592530

Copyright information

© Society for Experimental Mechanics 2015

Authors and Affiliations

  • John-Eric Dufour
    • 1
    • 3
  • Benoît Beaubier
    • 1
    • 2
  • François Hild
    • 1
  • Stéphane Roux
    • 1
  1. 1.LMT-Cachan, ENS Cachan / CNRS / Université Paris SaclayCachan CedexFrance
  2. 2.PSA Peugeot Citroën, Centre Technique de Vélizy BVélizy VillacoublayFrance
  3. 3.SAFRAN Snecma VillarocheReauFrance

Personalised recommendations